
TESTABILITY
REFACTORING IN
PULL REQUESTS

Patterns and Trends

Pavel Reich & Walid Maalej, University of Hamburg, Germany

1

HOW MANY OF YOU
HAVE EVER WRITTEN A
UNIT-TEST FOR LEGACY
CODE?

2

MOTIVATING EXAMPLE 1

WIDEN ACCESS FOR INVOCATION

3

Production code

Test code

Github/palantir

Pull request 729

MOTIVATING EXAMPLE 2

CREATE CONSTRUCTOR

4

github/virtual-imaging-platform

Pull request 52

Test code

Production code

THE BIGGER
PICTURE

5

• Developers don’t like writing unit-

tests for legacy code

• Legacy code may contain hard-to-

test singletons, direct operations on

network, database, system time

• Need to refactor legacy production

code before writing unit-tests

• What can we learn from studying

these refactorings in open-source?

6

Public PR dataset*
761 projects
with ≥50 PRs

Fetch Java pull requests (PRs)

Starting dataset
~346k PRs

Data Collection, Preparation, and Mining

7

Public PR dataset*
761 projects
with ≥50 PRs

Fetch Java pull requests (PRs)

Starting dataset
~346k PRs

~72k test-pairs PRs

10k other PRs

Select test-pairs PRs

Data Collection, Preparation, and Mining

8

Public PR dataset*
761 projects
with ≥50 PRs

Fetch Java pull requests (PRs)

Starting dataset
~346k PRs

~72k test-pairs PRs

10k other PRs 10k test-pairs PRs

(RQ1) Refactorings
trends in test-pairs PRs

Select test-pairs PRs

Random sampling +
 code fetching

Mine PRs with RefactoringMiner

Data Collection, Preparation, and Mining

9

Public PR dataset*
761 projects
with ≥50 PRs

Fetch Java pull requests (PRs)

Starting dataset
~346k PRs

Data Collection, Preparation, and Mining

~72k test-pairs PRs

10k other PRs

(RQ1) Refactorings
trends in test-pairs PRs

Select test-pairs PRs

Random sampling +
 code fetching

Mine PRs with RefactoringMiner

~39k manually
assessable test-pair PRs

Sampling using title masks

Prevalence and characteristics of
patterns (RQ3)

PRs with
≤9 changed

files

Pattern catalogue (RQ2)

Testability Dataset of 724 PRs
labelled with the patterns

Mine refactorings

Manual labelling

10k test-pairs PRs

REFACTORING-
MINING OF PRS

▪ 10k Test-Pairs PRs with changes in
production and test code + 10k “Other
PRs” without such changes

▪ We found more refactorings in
production code in TP-PRs than
in other PRs: 34.9 vs 23.6 refactorings
per PR

▪ Some refactorings are more frequent:
extract an operation, extract and
move operation, etc.

10

MANUAL ANALYSIS

▪ PRs categorized as

▪ Changes in production code solely to

improve testability (only_ref_for_test)

▪ Same as above + features/bugfixes

(incl_ref_for_test)

▪ Irrelevant for testability changes (only

changes, bugfixes, refactorings in test

code…)

▪ Testability-relevant PRs can contain one or

more testability refactoring patterns 11

TESTABILITY
REFACTORING
PATTERNS IN PRS

• Some patterns are

similar to dependency-

breaking techniques by

Feather (2004)

Pattern name Count %

extract_method_for_override 51 22.2

extract_method_for_invocation 39 17.0

widen_access_for_invocation 35 15.2

extract_class_for_invocation 29 12.6

add_constructor_param 25 10.9

extract_class_for_override 15 6.5

create_constructor 10 4.3

widen_access_for_override 9 3.9

override_system_time 4 1.7

extract_attribute_for_assertion 3 1.3

Total 230 100

12

PRS WITH TESTABILITY REFACTORINGS

13

Pattern name Count

extract_method_for_invocation 39

widen_access_for_invocation 35

extract_class_for_invocation 29

add_constructor_param 25

create_constructor 10

extract_attribute_for_assertion 3

Total 230

Pattern name Count

extract_method_for_override 51

extract_class_for_override 15

widen_access_for_override 9

override_system_time 4

extract_attribute_for_assertion 3

Total 82

RELEVANCE OF TITLE MASKS FOR PULL
REQUESTS WITH TESTABILITY

14

Title mask Testability

irrelevant

Testability

relevant

Testability_body 49 (45.0%) 60 (55%)

testability 6 (33.3%) 12 (66.7%)

Refactor for test 38 (52.1%) 35 (47.9%)

test 117 (78.5%) 32 (21.5%)

Dependency 43 (86.0%) 7 (14%)

Concurrency 44 (88.0%) 6 (12%)

Network 45 (90.0%) 5 (10%)

Singleton 23 (95.8%) 1 (4.2%)

Inject 44 (88.0%) 6 (12%)

Other 131 (87.3%) 19 (12.7%)

Total (N=724) 540 (74.7%) 184 (25.3%) Availability (N of PRs)

MAIN FINDINGS

▪ In ~13% of test-pairs PRs, developers

refactor production code to write unit-tests

▪ Typically, methods/classes are extracted to

override or to invoke

▪ Refactorings improve controllability and

observability (Freedman et al., 1991)

▪ Pattern override_system_time can be

implemented in different ways

15

SUBSEQUENT
RESEARCH

MSc thesis: Carstensen, Finn. An Empirical Study of Testability in JavaScript Projects .
Diss. Universität Hamburg, 2023.

Ongoing MSc thesis: Offe, Micha. Leveraging Large Language Models for Automated
Detection of

Testability Refactorings in Code

16

FINDOUT MORE AND
CONTRIBUTE

Datasets and catalog of patterns
available on Github (e.g. for teaching
or as refactoring templates in IDEs)

17
Pavel Reich & Walid Maalej, University of Hamburg, Germany
Contact pavel.reich@studium.uni-hamburg.de

mailto:pavel.reich@stadium.uni-hamburg.de

	Slide 1: Testability Refactoring in Pull Requests
	Slide 2: How many of you have ever written a unit-test for legacy code?
	Slide 3: Motivating example 1 widen access for invocation
	Slide 4: Motivating example 2 create constructor
	Slide 5: The bigger picture
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Refactoring-MinING of PRs
	Slide 11: Manual Analysis
	Slide 12: Testability refactoring patterns in PRs
	Slide 13: PRs with testability refactorings
	Slide 14: Relevance of title masks for Pull Requests with testability
	Slide 15: Main findings
	Slide 16: Subsequent research
	Slide 17: Findout More and Contribute

