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HOW MANY OF YOU 
HAVE EVER WRITTEN A 
UNIT-TEST FOR LEGACY 
CODE?
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MOTIVATING EXAMPLE 1

WIDEN ACCESS FOR INVOCATION
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Production code

Test code

Github/palantir

Pull request 729



MOTIVATING EXAMPLE 2

CREATE CONSTRUCTOR
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github/virtual-imaging-platform

Pull request 52

Test code

Production code



THE BIGGER 
PICTURE
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• Developers don’t like writing unit-

tests for legacy code

• Legacy code may contain hard-to-

test singletons, direct operations on 

network, database, system time

• Need to refactor legacy production 

code before writing unit-tests

• What can we learn from studying 

these refactorings in open-source?
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Public PR dataset*
761 projects
with ≥50 PRs

Fetch Java pull requests (PRs)

Starting dataset
~346k PRs

Data Collection, Preparation, and Mining

~72k test-pairs PRs

10k other PRs

(RQ1)  Refactorings
trends in test-pairs PRs

Select test-pairs PRs

Random sampling  +
 code fetching

Mine PRs with RefactoringMiner

~39k manually
assessable test-pair PRs

Sampling using title masks

Prevalence and characteristics of 
patterns (RQ3)

PRs with
≤9 changed

files

Pattern catalogue (RQ2)

Testability Dataset of 724 PRs 
labelled with the patterns

Mine refactorings

Manual labelling

10k test-pairs PRs



REFACTORING-
MINING OF PRS

▪ 10k Test-Pairs PRs with changes in 
production and test code + 10k “Other 
PRs” without such changes

▪ We found more refactorings in 
production code in TP-PRs than
in other PRs: 34.9 vs 23.6 refactorings
per PR

▪ Some refactorings are more frequent: 
extract an operation, extract and 
move operation, etc.
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MANUAL ANALYSIS 

▪ PRs categorized as 

▪ Changes in production code solely to 

improve testability (only_ref_for_test)

▪ Same as above + features/bugfixes 

(incl_ref_for_test)

▪ Irrelevant for testability changes (only 

changes, bugfixes, refactorings in test 

code…)

▪ Testability-relevant PRs can contain one or 

more testability refactoring patterns 11



TESTABILITY 
REFACTORING 
PATTERNS IN PRS

• Some patterns are 

similar to dependency-

breaking techniques by 

Feather (2004)

Pattern name Count %

extract_method_for_override 51 22.2

extract_method_for_invocation 39 17.0

widen_access_for_invocation 35 15.2

extract_class_for_invocation 29 12.6

add_constructor_param 25 10.9

extract_class_for_override 15 6.5

create_constructor 10 4.3

widen_access_for_override 9 3.9

override_system_time 4 1.7

extract_attribute_for_assertion 3 1.3

Total 230 100
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PRS WITH TESTABILITY REFACTORINGS
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Pattern name Count

extract_method_for_invocation 39

widen_access_for_invocation 35

extract_class_for_invocation 29

add_constructor_param 25

create_constructor 10

extract_attribute_for_assertion 3

Total 230

Pattern name Count

extract_method_for_override 51

extract_class_for_override 15

widen_access_for_override 9

override_system_time 4

extract_attribute_for_assertion 3

Total 82



RELEVANCE OF TITLE MASKS FOR PULL 
REQUESTS WITH TESTABILITY
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Title mask Testability

irrelevant

Testability

relevant

Testability_body 49 (45.0%) 60 (55%)

testability 6 (33.3%) 12 (66.7%)

Refactor for test 38 (52.1%) 35 (47.9%) 

test 117 (78.5%) 32 (21.5%) 

Dependency 43 (86.0%) 7 (14%) 

Concurrency 44 (88.0%) 6 (12%) 

Network 45 (90.0%) 5 (10%) 

Singleton 23 (95.8%) 1 (4.2%) 

Inject 44 (88.0%) 6 (12%) 

Other 131 (87.3%) 19 (12.7%) 

Total (N=724) 540 (74.7%) 184 (25.3%) Availability (N of PRs)



MAIN FINDINGS

▪ In ~13% of test-pairs PRs, developers 

refactor production code to write unit-tests

▪ Typically, methods/classes are extracted to 

override or to invoke

▪ Refactorings improve controllability and 

observability (Freedman et al., 1991)

▪ Pattern override_system_time can be 

implemented in different ways
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SUBSEQUENT 
RESEARCH

MSc thesis: Carstensen, Finn. An Empirical Study of Testability in JavaScript Projects . 
Diss. Universität Hamburg, 2023.

Ongoing MSc thesis: Offe, Micha. Leveraging Large Language Models for Automated 
Detection of

Testability Refactorings in Code
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FINDOUT MORE AND 
CONTRIBUTE

Datasets and catalog of patterns
available on Github (e.g. for teaching
or as refactoring templates in IDEs)
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