
GSI Helmholtzzentrum für Schwerionenforschung GmbH

Deploying infrastructure-as-a-service at GSI 
with JupyterHub
Jeremy Wilkinson (GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt)

Jupyter notebooks allow interactive Python-based graphical analysis to be run remotely from the 
user’s laptop over a web socket. However, running such sessions using cluster resources is 
complex to set up and not always possible due to firewall policies. In addition, specialised 
resources such as GPUs for machine learning may require dedicated support such as up-to-date 
drivers and framework libraries. The JupyterHub [1] service offers a central solution for spawning, 
running, and managing Jupyter instances via the institute’s job scheduler, in a way that is 
transparent to the user and with authentication managed securely by central services.

“VirgoSpawner” 
Jupyterhub 

Spawner plugin

User’s web 
browser

Web server

KeyCloak Authenticator plugin

C
o

nfigu
rab

le 
H

T
T

P
 pro

xy

Authentication server

Worker node:
Single-User Notebook Server in 

Apptainer container

4. Spawner plugin opens SSH 
connection to cluster submit node using 
OIDC token, submits job request

SLURM job 
allocation on
cluster node5. Hostname, port, job 

ID are sent back to Hub 
via spawner

6. Hub establishes direct connection from Hub to 
Jupyter lab session, control passed to user

3. Spawn 
request
with custom 
user options

Virgo batch
submit node

1. User redirected to login 
portal for authentication
with 2FA

 2. User authenticated, 
OIDC token exchanged

Planned
server flow

JupyterHub VirgoSpawner:
- Custom spawner plugin allows deployment of jobs 
to GSI’s Virgo computing cluster [2]

- Spawns and manages Jupyter sessions via web 
interface, simplifying user workflow

- Job allocation based on user’s standard quota, 
with job submission transparent to user

- User can customise job parameters according to 
resource needs (configurable by service admins)

- Stable environment provided by centrally managed 
Apptainer [3] containers, including support for GPU 
drivers where needed

- Error handling in case of failure in job submission

- Planned for deployment within this year

Key security considerations for planning:

- Web service does not run with elevated rights or 
directly access Slurm credentials

- No access to cluster resources or files via Web 
without 2-factor authentication

- Job submission performed as the user with secured 
credentials handled by trusted service – no 
unauthenticated impersonation of user

- Spawner plugin validates + sanitises user option 
inputs to prevent invalid or malicious spawn 
parameters

External packages: 
- Authentication using KeyCloak [4] (with 2FA) as 
SSO provider and OIDC token broker

- KeyCloakAuthenticator plugin [5] from CERN’s 
SWAN service handles auth state within 
JupyterHub

- Mapping between GSI Web login and Linux 
cluster account handled in LDAP

- Validation of OIDC token using Motley Cue [6], 
authorised by ssh-oidc PAM plugin

- Extension to AsyncSSH [7] Python package 
allows passing of OIDC token as SSH credential

User view

References:
[1] JupyterHub: https://jupyterhub.readthedocs.io
[2] GSI Virgo Cluster: https://hpc.gsi.de/virgo/
[3] Apptainer: https://apptainer.org
[4] KeyCloak: https://www.keycloak.org/
[5] KeyCloakAuthenticator: https://github.com/swan-cern/jupyterhub-extensions
[6] Motley Cue: https://dianagudu.github.io/motley_cue/
[7] AsyncSSH: https://asyncssh.readthedocs.io/en/latest/ 

https://jupyterhub.readthedocs.io/
https://hpc.gsi.de/virgo/
https://apptainer.org/
https://www.keycloak.org/
https://github.com/swan-cern/jupyterhub-extensions
https://dianagudu.github.io/motley_cue/
https://asyncssh.readthedocs.io/en/latest/

	Slide 1

