
1. akshay.devkate@uni-potsdam.de
2. mario.frank@uni-potsdam.de
3. anna-lena.lamprecht@uni-potsdam.de

Empirical Analysis of Software Quality Assurance Practices in Scientific Computing

Abstract
As scientific research increasingly relies on software to handle complex data, limited formal
training in software development among researchers often leads to issues with documentation,
code reliability, and reproducibility. In this study, we conducted an empirical analysis of 2100+
open-source research repositories from the SciCat collection [1], focusing on practices aligned
with the FAIR4RS recommendations [2,3], and the ‘Best Practices in Scientific Computing’ [4]
and ‘Good Enough Practices in Scientific Computing’ [5] as published in PLOS Biology
journal. Our preliminary results indicate that not all repositories adhere to the FAIR
recommendations, that basic documentation is inconsistent, and that researchers tends to favor
dependency configuration files over .lock files or explicitly pinned dependency files for
managing project dependencies. Additionally, testing requires more attention, particularly in
Python and C++ projects. Continuous Integration (CI) is preferred over Pre-Commit Hooks.

Data: SciCat Collection of Scientific Software Repositories
• SciCat dataset [1]: a curated collection of FLOSS projects from 131 million scientific

software repositories, focusing on research software published on JOSS (Journal for Open
Source Software).

• 96% from GitHub, with the remaining 4% distributed over Bitbucket, GitLab, and self-
hosted GitLab instances. Our analysis focuses on GitHub.

• Python (46%) is the most prevalent language, followed by R (18.5%) and C++ (7%),
shaping our study around these three languages.

FAIR
We assessed the conformance of repositories to the ”Five Recommendations for FAIR
Software” (https://fair-software.eu/) using the NLeSC’s howfairis tool [3] (see Figure 2).

• Repository: All the repositories in SciCat dataset were in a public repository (GitHub).
• Licenses: The most common were MIT, GPL-3.0, BSD-3-Clause, and Apache-2.0.

Permissive and GPL 3.0 licenses were predominant with about 57% and 22 %, respectively.
• Registry : The C++ community has low adoption of publishing software on community

registries, while Python and R have higher adoption but still require attention.
• Citation: Software citation needs further attention across all programming languages.
• Checklist: Only 15 (2.5%) repositories have a checklist (OpenSSF best practices) badge.

Documentation
1. Brief comments at the start of code files is more common in C++ than in Python and R.
2. Having installation and usage guides in the README file is less common in R projects

compared to those in other programming languages.
3. Contribution guidelines were present in roughly half of the repositories across Python, R,

C++, and other languages. However, a code of conduct was notably rare, appearing in only a
minimal fraction of repositories.

Language Ratio of code files with brief comment at start README Other

Less
(<25%)

Some
(25-50%)

More
(50-75%)

Most
(>75%)

Installation Usage Contributing
Guidelines

Code of
conduct

Python 31% 16% 20% 30% 60% 54% 54% 2%

R 18% 17% 42% 21% 24% 19% 46% 6%

C++ 16% 5% 16% 61% 48% 41% 51% 0.70%

Other NA NA NA NA 42% 37% 46% 6%

Project Dependencies
• Dependency configuration files (DepConf) are commonly used in Python, R but less

frequently defined in C++.
• The use of .lock files or explicitly pinned dependencies to ensure reproducibility is minimal

in Python (5%), R (3%) and entirely absent in C++ (see Figure 3 and Table 2).

Testing
• Testing appears to be more common in R compared to Python and C++ (see Table 3).
• Recursive analysis of test subfolder names revealed the listed testing types (see Figure 4),

with no e2e, acceptance, security, sanity, or mutation testing.
• Few repositories organize test files by testing types, in subfolders; most use module names.

Continuous Integration and
Pre-Commit Hooks
• Continuous Integration (CI) is more

commonly used than Pre-Commit Hooks
to enforce testing and code quality across
all languages.

• Pre-Commit Hooks are more common in
R projects than in other languages.

Conclusion & Outlook
• Recommended research software practices (like publishing software on community

registries and software citation) are not yet widely adopted.
• Existing checklists like OpenSSF best practices are not tailored for research software,

highlighting the need for specialized checklists.
• Clear installation guides and explicitly pinned (.lock) dependency files are crucial for

reproducibility, but are often missing.
• Testing remains underdeveloped, lacking clear guidelines on structuring and managing test

files and folders.
• Clear need for further empirical investigation of different types of testing using alternative

methods, tooling support available across programming languages, and how tools like
Continuous Integration and Pre-Commit Hooks can help effectively automate testing tasks.

• This is work in progress, all comments are very welcome! J

References
[1] Malviya-Thakur A, Milewicz R, Paganini L, et al. SciCat: A Curated Dataset of Scientific
Software Repositories. arXiv preprint arXiv:2312.06382. 2023 Dec 11.
[2] Barker M, Chue Hong NP, Katz DS, et al. Introducing the FAIR Principles for research
software. Scientific Data. 2022 Oct 14;9(1):622..1038/s41597-022-01710-x
[3] Spaaks JH, Kuzak M, Martinez-Ortiz C, et al. howfairis. Zenodo; 2021.
[4] Wilson G, Aruliah DA, Brown CT, et al. Best Practices for Scientific Computing. PLOS
Biology. 2014 Jan 7;12(1):e1001745.
[5] Wilson G, Bryan J, Cranston K, et al. Good enough practices in scientific computing. PLOS
Computational Biology. 2017 Jun 22;13(6):e1005510.

Language Has DepConf
files

Has .lock file

Python 96% 4.9%
R 97% 1.6%
C++ 53% 0%

1 2 3

Language Has test folder

Python 57%

R 83%

C++ 62%

Language Has Pre-
commit hooks

Has CI Has both

Python 4 % 75% 4%

R 20% 80% 18%

C++ 2% 81% 2%

Figure 1: Language distribution Figure 2: Adherence to FAIR principles

Table 1: Analysis of documentation coverage

Table 2: Dependencies

Figure 4: Testing types

Table 4: CI and Pre-Commit Hook coverage.

Other Languages: Julia, HTML, JavaScript, MATLAB, C, Java, Fortran, TeX, Rust, Go, C#, Perl, Cython, Ruby, Cuda, TypeScript, Kotlin,
Mathematica, Shell, IGOR Pro, OCaml, IDL, Vue, Matlab, PHP, Scala, CMake, GLSL, Nextflow, GAP, Pascal, Tcl, Scheme, Stata, Prolog,
JetBrains MPS, Yacc, F#, Gnuplot, HCL, PureBasic, Slash, Modelica, Arc, Verilog, PostScript, Clojure, Makefile, Haskell, Groovy, CSS

Akshay Devkate1, Mario Frank2, Anna-Lena Lamprecht3

Table 3: Analysis of presence of test folder

Dependency configuration
files:
• Python:

requirements.txt, setup.py,
pyproject.toml, Pipfile.

• R: DESCRIPTION
• C++: CmakeLists.txt1,

vcpkg.json, conanfile.py, c
onanfile.txt

Explicitly pinned
dependencies/ .lock file:
• Python:

Pipfile.lock, poetry.lock,
requirement.lock

• R: renv.lock,
packrat.lock

• C++2: vcpkg.lock
• conan.lock

Managing project dependencies

Figure 3: Dependency files

1. From existence of a CMakeList file, we inferred that it
includes dependency configuration (e.g., find_package()).

2. CMake does not generate .lock files unlike Conan and
vcpkg.

https://doi.org/10.1038/s41597-022-01710-x

