
Recovering Knowledge

from old code

Fredo Erxleben, Helmholtz-Zentrum Dresden-Rossendorf
deRSE 2025 - 2025/02/27

Short Intro

• RSE, trainer and consultant for HIFIS
• HIFIS offers RSE Consulting Service aimed at scientists in Helmholtz
• Wide range of covered topics
 • Licensing, publication, code review, project planning, …

The Mission

• Use old code to match up crystal cross-sections
• Yields better results than other published
algorithms.
How does it calculate its results?

The Mission

• Use old code to match up crystal cross-sections
• Yields better results than other published
algorithms.
How does it calculate its results?

The ISSUES

• Author is no longer available
• Few knowledgeable users left
• Unclear legal situation
• Sparse, outdated? documentation
• No version history

The Big L

• No license was initially given
• First code publication under CC 4.0
• Clarified intentions with author
• Check for potential license claims
 from former employer

→ Now under MIT

The Big L The Big R

• No license was initially given
• First code publication under CC 4.0
• Clarified intentions with author
• Check for potential license claims
 from former employer

• Code was not versioned at all
• Set up repository in GitLab
 (Helmholtz Codebase)
• Added relevant files for compilation
• Added verified documentation parts

→ Now under MIT → Now under version control

The Masterplan

Extract math formulas from code

Create CI tests using known I/O as fixtures

Rewrite the code in a modern environment

Clea
r a

nd
easy

.

What
 co

uld
poss

ibly

go
wro

ng?

A Closer Look at the code

• FORTRAN 77
• 10K+ lines
• Sparse documentation

 common /ngk/ ngk 805

 character*4 nam1,nam2,text,ta1 806

 character*1 jsm 807

 character* 10rs,rss 808

c 809

c cell parameters B-memory > work area 810

 if (ngk.gt.0) go to 10 811

 write (ioa,80) 812

 n=0 813

 return 814

 10 write (io,70) (j,(dgg(k,j),k=1,3),(dggw(k,j),k=1,3),jsm(la(j)), 815

 1rss(j),nam1(j),(nam2(i,j),i=1,3),j=1,ngk) 816

 if (io.ne.ioa) write (ioa,70) (j,(dgg(k,j),k=1,3),(dggw(k,j),k=1, 817

 13),jsm(la(j)),rss(j),nam1(j),(nam2(i,j),i=1,3),j=1,ngk) 818

 n=1 819

 write (ioa,90) 820

Dealing with "historic" programming language:
• Transpile into something more "modern" or
• Learn how it works

 this

Does it Compile?

Challenge:
 There are a lot of compiler options for
 non-standard behaviour
Good news:
 Compiles out-of-the-box with minimal
 additional parameters
But: Minor warnings

gfortran -std=legacy -o piep17z piep17z.for

Does it Compile?

Challenge:
 There are a lot of compiler options for
 non-standard behaviour
Good news:
 Compiles out-of-the-box with minimal
 additional parameters
But: Minor warnings

Does it Run?

gfortran -std=legacy -o piep17z piep17z.for

Yes. But:
• Needs the right files in the right place
• Needs domain expert to operate

   ~/piep-consult  ./piep17z

#################################

======= P I E P =======

======= VERSION 14-jun-17 =======

#################################

default parameters from file? (def.=yes)

parameter-file piep.par ? (blank), otherwise name

--

cell parameter file assigned: cell.dat , 61 sets

1st set read, unit: 20, file: cell.dat

--

SAD data file: unit 30, file: sadm.dat , 17 sets

1st set loaded

--

Pen & Paper
Try the naïve approach…
Known: input, commands, output

• Learn which questions to tackle
• Figure out which techniques are promising

Reverse Engineering by hand does not scale!

Pen & Paper
Try the naïve approach…
Known: input, commands, output

• Learn which questions to tackle
• Figure out which techniques are promising

Reverse Engineering by hand does not scale!

Tool support

Available tools:
• Debugger (gdb), Static Analysis (valgrind)
• Language-specific tools (commercial)
• kscope (discontinued)

Having tools is nice, but which part of the
code do we need to investigate?

→ Need something to annotate the code

Side Note: Fun features of Fortran

• Split variable definitions
• Common blocks + equivalence statements
• Data type can depend on variable name
• Subroutines can return to place different from call
• Function return values via implicit variables
• …

→ Vastly different from currently established languages.

a(1)

a(2)

a(3)

a(4)

a

b

cb

Feature Whishlist
• Get overview over code structure
• Identify variables that share memory
• Identify types, initial values and dimensions
• Allow to annotate everything in situ
 • Support for formulas
• Identify which lines generate a given output
• Vizualize the data flow between statements

More to come …

Feature Whishlist
• Get overview over code structure
• Identify variables that share memory
• Identify types, initial values and dimensions
• Allow to annotate everything in situ
 • Support for formulas
• Identify which lines generate a given output
• Vizualize the data flow between statements

More to come …

Initial Steps

• Parse the code, build a OO-model
• Implement UI for explorative tasks
• Add algorithms for trivial reasoning

All we need is an EBNF for FORTRAN 77

Can't be that hard to find

Parsing Fortran 77

• The standard is a recommendation
• Many "optional" language features
• No complete EBNF to be found
• AI was not helpful

→ Use LARK as parser
→ Write grammar matching required features
→ Adapt while learning about FORTRAN 77

// Entry point for parsing

line : assignment | _statement | type_declaration

assignment : _variable_access "=" _expression

type_declaration : TYPE_NAME type_size? _comma_sequence{individual_declaration}

 type_size : "*" (_expression | DUMMY_TYPE_SIZE)

 individual_declaration : _variable_access type_size?

 // NOTE According to Section 4.14,

 // initializing variables in type statements is non-standard

→ Focus on features used in example code
→ Working for selected subset
→ ~200 rules / terminals

Current state

Can parse the example code and build a model

statements OK 7718 / 7718 (100.0%)

statements XX 0 / 7718 (0.0%)

Common blocks: 36

Functions: 17

Subroutines: 91

Block data: 1

Overall variables: 4806

Current state

Can parse the example code and build a model

statements OK 7718 / 7718 (100.0%)

statements XX 0 / 7718 (0.0%)

Common blocks: 36

Functions: 17

Subroutines: 91

Block data: 1

Overall variables: 4806

Next Steps

Un-prototype:
• Clean up code and grammar
• Add doc, license, readme
Investigate model:
• Make explorable
• Make annotateable

Recovering Knowledge

from old code

Fredo Erxleben, f.erxleben@hzdr.de
https://hifis.net

Part 1

Stay tuned!

This wa
s

