
20

Weierstrass Institute
for Applied Analysis and Stochastics

Conserving Legacy Code
From handwritten Makefile to modern build systems and

activatable archivation

deRSE25 27.02.2025

by J. Ph. Thiele, J. Fuhrmann

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

1

20

 In terms of mathematics, physics and industrial application:

 New PDE theory and numerical mathematics for semiconductor devices

 Leading tool in ‚the East‘ and even worldwide (only realized 1992, after reunification)

 Still relevant today with semiconductors being ubiquitous and even needed in quantum devices

 In terms of usability and technology (in the ‚feature complete‘ version of 1996)

 Efficient Fortran code capable of 3D simulations

 Dedicated scripting language for simulation control

 Onboard graphics based on X11 → Steering of output through scripting

 Validated against physical experiments → High trust in results by user community

TeSCA was highly innovative

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

2

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 1983: beginning of project

 1995/96: Last major changes with only smaller revisions and bugfixes afterwards

 2005: Collection of examples (script files etc.) from users

 2014: Retirement of last main developer, continued interest → collaborative effort:

 Relocation of source code to mercurial for shared version control (now GitLab)

 Introduction of CMake and CTest with small integration tests

 New revision of the user manual

 2018: Release of GCC 8 → Incompatibilities lead to floating point errors

 2023/24: Renewed interest due to new developments in Julia WIAS-PDELib (Poster by P. Jaap)

 Smaller revisions to CMake

 Using Docker to build an executable that runs on modern systems

Development Timeline

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

3

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 Version control wasn’t a thing → folders, tar files and mails where used

 Compilation was initially done with ‘gfortran *.F’, i.e. not even a Makefile

 No coding standards like:

 Naming conventions

 Frequent useful comments

 Consistent formatting

 Unit testing wasn’t a thing, the first xUnit framework SUnit was developed in 89

 No software design

The challenging parts of legacy software (technical)

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

4

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 Institutional knowledge is gone

 No one understands the full code base

 No one knows what challenges were faced during development

 Sometimes hardly anyone speaks the used programming language

 There is almost no (time) budget, but it would be needed for

 Understanding the code base

 Understanding all of the numerical methodology

 Writing (unit) tests to safeguard further development

 Refactoring/Redesigning the code

The challenging parts of legacy software (people)

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

5

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 Check for third party libraries and subpackages like X11, Xau, etc.

 Better handling of linking libraries and targets

 Modularity: CMakeLists can include one another (e.g. in subfolders of src)

 Out of source builds

 Common options can be included, e.g. for specific machines

 CTest allows for easier setup of a test suite

Why CMake?

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

6

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 Allows running of different (linux) operating systems in containers

 Easy to test if things run in a `barebones’ setting without your local installation

 `document’ all the steps to get a software running on a new system

 One basis for GitHub actions / GitLab CI → similar to write

 Multi stage files are possible → Easy way to remove temporary build files

 In our case: Use Ubuntu 20.04 which still has gcc-7 in its repositories

 ! Word of caution: as long as they are still available

Docker/Podman containers

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

7

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 Get TeSCA to build and tests to run in container → exec runs in Docker, but no graphics output

 Figure out how to connect X window with docker to run larger examples as a test → exec with graphics

 Try building a statically linked executable

 Dynamic: External libraries are `somewhere’ on the machine and can be shared by multiple programs
 → user has to install external libraries like X11 and the gfortran7 library

 Static: All code needed for the execution is inside the executable
 → user can directly run the executable (on Linux)

 → Fully static did not work because of X11: depends on too many libraries, very large exec, graphics

 TeSCA without X11? Failure: Too strongly coupled and plotting would be too different for users

 Final alternative: statically link GCC and dynamically link everything else

 User has to install X11-devel (from package manager, so easy to do)

 → Portable executable runs on different linux machines (and WSL) after install of X11

Docker: Our steps with TeSCA

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

8

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20



Dockerfile (Setup of container)

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

9

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20



Dockerfile (Building and executable container)

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

10

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20



Dockerfile (Building and only executable)

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

11

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 A distributed version control system is great

 CMake makes adding options much easier (e.g. TESCA_STATIC_GCC) and is better to maintain

 Switching to CMake is much easier when a main developer is still around!

 Keeping track of software and developers is important

 Docker is a good tool, when aware of the caveats like long term availability

 Do my installation steps work on different machines?

 In this case: no need to bui;d GCC 7 by hand

 The flags `-static-libgcc -static-libgfortran’ are great when you require an `ancient’ version of GCC

 Users were able to use the executable and get expected results

 Will be a good basis for `model model comparisons’ and gaining trust in the newer Julia developments

Conclusions

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

12

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

