
20

Weierstrass Institute
for Applied Analysis and Stochastics

Conserving Legacy Code
From handwritten Makefile to modern build systems and

activatable archivation

deRSE25 27.02.2025

by J. Ph. Thiele, J. Fuhrmann

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

1

20

 In terms of mathematics, physics and industrial application:

 New PDE theory and numerical mathematics for semiconductor devices

 Leading tool in ‚the East‘ and even worldwide (only realized 1992, after reunification)

 Still relevant today with semiconductors being ubiquitous and even needed in quantum devices

 In terms of usability and technology (in the ‚feature complete‘ version of 1996)

 Efficient Fortran code capable of 3D simulations

 Dedicated scripting language for simulation control

 Onboard graphics based on X11 → Steering of output through scripting

 Validated against physical experiments → High trust in results by user community

TeSCA was highly innovative

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

2

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 1983: beginning of project

 1995/96: Last major changes with only smaller revisions and bugfixes afterwards

 2005: Collection of examples (script files etc.) from users

 2014: Retirement of last main developer, continued interest → collaborative effort:

 Relocation of source code to mercurial for shared version control (now GitLab)

 Introduction of CMake and CTest with small integration tests

 New revision of the user manual

 2018: Release of GCC 8 → Incompatibilities lead to floating point errors

 2023/24: Renewed interest due to new developments in Julia WIAS-PDELib (Poster by P. Jaap)

 Smaller revisions to CMake

 Using Docker to build an executable that runs on modern systems

Development Timeline

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

3

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 Version control wasn’t a thing → folders, tar files and mails where used

 Compilation was initially done with ‘gfortran *.F’, i.e. not even a Makefile

 No coding standards like:

 Naming conventions

 Frequent useful comments

 Consistent formatting

 Unit testing wasn’t a thing, the first xUnit framework SUnit was developed in 89

 No software design

The challenging parts of legacy software (technical)

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

4

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 Institutional knowledge is gone

 No one understands the full code base

 No one knows what challenges were faced during development

 Sometimes hardly anyone speaks the used programming language

 There is almost no (time) budget, but it would be needed for

 Understanding the code base

 Understanding all of the numerical methodology

 Writing (unit) tests to safeguard further development

 Refactoring/Redesigning the code

The challenging parts of legacy software (people)

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

5

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 Check for third party libraries and subpackages like X11, Xau, etc.

 Better handling of linking libraries and targets

 Modularity: CMakeLists can include one another (e.g. in subfolders of src)

 Out of source builds

 Common options can be included, e.g. for specific machines

 CTest allows for easier setup of a test suite

Why CMake?

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

6

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 Allows running of different (linux) operating systems in containers

 Easy to test if things run in a `barebones’ setting without your local installation

 `document’ all the steps to get a software running on a new system

 One basis for GitHub actions / GitLab CI → similar to write

 Multi stage files are possible → Easy way to remove temporary build files

 In our case: Use Ubuntu 20.04 which still has gcc-7 in its repositories

 ! Word of caution: as long as they are still available

Docker/Podman containers

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

7

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 Get TeSCA to build and tests to run in container → exec runs in Docker, but no graphics output

 Figure out how to connect X window with docker to run larger examples as a test → exec with graphics

 Try building a statically linked executable

 Dynamic: External libraries are `somewhere’ on the machine and can be shared by multiple programs
 → user has to install external libraries like X11 and the gfortran7 library

 Static: All code needed for the execution is inside the executable
 → user can directly run the executable (on Linux)

 → Fully static did not work because of X11: depends on too many libraries, very large exec, graphics

 TeSCA without X11? Failure: Too strongly coupled and plotting would be too different for users

 Final alternative: statically link GCC and dynamically link everything else

 User has to install X11-devel (from package manager, so easy to do)

 → Portable executable runs on different linux machines (and WSL) after install of X11

Docker: Our steps with TeSCA

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

8

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

Dockerfile (Setup of container)

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

9

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

Dockerfile (Building and executable container)

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

10

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

Dockerfile (Building and only executable)

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

11

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

20

 A distributed version control system is great

 CMake makes adding options much easier (e.g. TESCA_STATIC_GCC) and is better to maintain

 Switching to CMake is much easier when a main developer is still around!

 Keeping track of software and developers is important

 Docker is a good tool, when aware of the caveats like long term availability

 Do my installation steps work on different machines?

 In this case: no need to bui;d GCC 7 by hand

 The flags `-static-libgcc -static-libgfortran’ are great when you require an `ancient’ version of GCC

 Users were able to use the executable and get expected results

 Will be a good basis for `model model comparisons’ and gaining trust in the newer Julia developments

Conclusions

25-02-27

Footer (edit via ‘Insert > Header / Footer’) - this is a test title!

12

Conserving Legacy Code: From handwritten Makefile to modern build system and activatable archivation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

