
Incremental MPI Parallelization of a Julia Functional Renormalization
Group code: a case study

Michele Mesiti | Feb 26, 2025

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

https://www.kit.edu

Written by Nils Niggemann while PhD at FU Berlin, now Postdoc at ICTP (Trieste)

Paper on the method: “Frustrated quantum spins at finite temperature: Pseudo-Majorana functional
renormalization group approach (LINK)”

Language: Julia

HPC techniques used (originally): Task-Based Multithreading, Vectorization

1/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Quick facts about PMFRG.jl

https://github.com/NilsNiggemann
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.104431
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.104431

Dynamics of K2Ni2(SO4)3 governed by proximity to a 3D spin liquid model

(INS: Inelastic Neutron Scattering)

2/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Application domain: Spin Structure Factors

https://doi.org/10.1038/s41467-024-51362-1

HiRSE project (then, still HiRSE_PS)

Some very mature codebases, some in its infancy -> PFFRG
MPI parallelization with mutual benefit:

Interest from the code owners in MPI parallelization - MPI.jl was quite clearly the way to go for them:
previous C++ codes using OpenMP + MPI
MPI.jl being regarded as more performant than alternatives in the Julia ecosystem

Interest from M.M. in trying Julia and get experience in it

3/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Human Context

https://www.helmholtz-hirse.de/
https://www.helmholtz-hirse.de/codes.html
https://www.helmholtz-hirse.de/codes/pffrg.html

Application Domain

Heisenberg models (S⃗i = electron spin):

H =
∑

ij

Jij S⃗i S⃗j (1)

Ji,j : interaction between spins in different lattice sites
No analytical & direct methods to compute the correlation function Γ exist but we have approximate and
“indirect” methods.

Computational approach: Functional Renormalization Group in a nutshell
We introduce a parameter Λ which is inversely related to the maximum distance at which we allow the
system to have its own dynamics (e.g., interact)

We know the values of Γ when Λ → ∞ (no long-range interaction)

We know the dΓ(Λ)
dΛ

We try to compute the real value of Γ = Γ(0) by integrating the corresponding ODE
4/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Application domain and computational approach

Data structures
dΓ(Λ)

dΛ is easily computed from 4D arrays named Xa,b,c and X̃a,b,c,d , with indices (Rij, is, it, iu)
Rij < ∼ 100
$is,it,iu < N $ N ∼ 50$

See Eqs. 50 of the paper.

“Extreme pareto”
98% of the computational load is in 2% of the code

The computation of the derivative is THE numerical challenge ($ FLOP ∝ Nˆ4 $) and scales well (*) with
the number of processors and the number of nodes

5/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Computational challenges

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.104431

for Rij = 1:Npairs

#Perform summation on this temp variable before writing to State array as Base.setindex! proved to be a bottleneck!

Xa_sum = 0.0

Xb_sum = 0.0

Xc_sum = 0.0

@turbo unroll = 1 for k_spl = 1:Nsum[Rij]

#loop over all Nsum summation elements defined in geometry. This inner loop is responsible for most of the computational effort!

ki = S_ki[k_spl, Rij]

kj = S_kj[k_spl, Rij]

m = S_m [k_spl, Rij]

xk = S_xk[k_spl, Rij]

Ptm = Props[xk, xk] * m

Xa_sum += (+Va12[ki] * Va34[kj] + Vb12[ki] * Vb34[kj] * 2) * Ptm

Xb_sum +=

(+Va12[ki] * Vb34[kj] + Vb12[ki] * Va34[kj] + Vb12[ki] * Vb34[kj]) * Ptm

Xc_sum += (+Vc12[ki] * Vc34[kj] + Vc21[ki] * Vc43[kj]) * Ptm

end

X.a[Rij, is, it, iu] += Xa_sum

X.b[Rij, is, it, iu] += Xb_sum

X.c[Rij, is, it, iu] += Xc_sum

end

6/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Computational challenge

Ideally:

Before going on multiple nodes, you should make sure you use one well

Before going on multiple cores, you should make sure you use one well

Not just for your Core*Hour budget, but for the Planet.
From the HLRS Node-Level Performance Engineering course page:

Even application developers who are fluent in OpenMP and MPI often lack a good grasp of how much
performance could at best be achieved by their code. This is because parallelism takes us only half
the way to good performance. Even worse, slow serial code tends to scale very well, hiding the fact
that resources are wasted.

7/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Do you really want MPI?

https://www.hlrs.de/training/2024/nlp

Performance optimization data missing,
but evidently some work had been done on optimization:

unintuitive nested loop order
creation of buffers to avoid setindex and getindex bottlenecks (according to code comments)

8/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Do you really want MPI?

Weeks of Misery spent on:
Chasing sources of lack of reproducibility in benchmark results:

not following the Manifest, perhaps? (AKA not knowing what your code actually depends upon) Should the
Manifest be under version control?
thread pinning, perhaps? (Thanks, ThreadPinning.jl)
performance governors, perhaps?(Thanks, likwid-setFrequencies)

Trying to collect performance counters with LIKWID.jl (Serializing the results and trying to read them again
fails - possibly wrong approach, or maybe use JLD2?)

Profiling with pprof.jl would produce malformed profile.pb.gz (solution found many months later)

Settled on TimerOutputs.jl

9/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Learning Performance Characterization in Julia the Hard
Way

https://github.com/carstenbauer/ThreadPinning.jl
https://github.com/RRZE-HPC/likwid/wiki/likwid-setFrequencies
https://github.com/JuliaPerf/LIKWID.jl
https://github.com/JuliaPerf/PProf.jl
https://github.com/KristofferC/TimerOutputs.jl

1 Wednesday, week 1: Reference benchmark runs in ~14s, in-node scaling unsatisfying
2 Friday, week 1: Reference benchmark runs in ~20s, in-node scaling better
3 week 2: Heard that the Downfall mitigation might have affected scatter/gather operations a little. For the

lack of better ideas, I ask for information
4 week 3: Sysadmins revert microcode change on one of the 2 nodes on the test cluster. We

miscommunicate, and I get the information that they reverted on the other node
5 I go crazy for a week:

discover that changes made with likwid-setFrequencies are not reset after job terminates.
sysadmins take likwid-setFrequencies out of reach of ordinary users

6 A colleague shows me the microcode field in /proc/cpuinfo and the misunderstanding happened at 3. is
solved

7 I ask for help in the discourse

10/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Learning Performance Characterization in Julia the Hard
Way: Downfall + Tower of Babel Edition

https://downfall.page/
https://discourse.julialang.org/t/compilation-options-for-downfall-mitigation/104844

11/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Attempt at performance characterization and in-node
scaling

12/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Attempt at performance characterization and in-node
scaling

MPI should be optional

MPI code should be confined away from where domain scientists (non MPI-savvy) would see it

Decided to use the (then) new “Package Extension” feature.

13/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

MPI Implementation Constraints

I need to do some characterization tests! And of course I wrote my tool for that:

Recorder.jl
From the Readme of Recorder.jl:

using Recorder

using MyModule

function deep_in_the_callstack_in_nested_loops_and_without_tests()

[...]

res = @record func(a,b,c)

[...]

end

Take out a lot of boilerplate to generate this kind of test cases.

(I wanted to do something like this since long).
14/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

MPI Implementation - Preparation

https://github.com/mmesiti/Recorder.jl

Each MPI rank computes the result for a section of the X arrays sub-range in the indices is, it and iu
(ranges in iu are NOT equal in size for different ranks -> Load balancing requires care)

Data is communicated in an AllToAll fashion

for root = 0:(nranks-1)

isrange, itrange, iurange_restrict = all_ranges[root+1]

iurange_abc = Par.Options.usesymmetry ? iurange_restrict : iurange_full

MPI.Bcast!((@view X.a[:, isrange, itrange, iurange_abc]), root, MPI.COMM_WORLD)

15/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

MPI Implementation

Time Allocations

Tot / % measured: 999s / 99.5% 120GiB / 98.5%

Section ncalls time %tot avg alloc %tot avg

total solver 1 994s 100.0% 994s 118GiB 100.0% 118GiB

getDeriv! 409 970s 97.5% 2.37s 114GiB 96.9% 287MiB

getXBubble! 409 882s 88.7% 2.16s 97.5MiB 0.1% 244KiB

partition 409 578s 58.2% 1.41s 46.2MiB 0.0% 116KiB

communication 409 303s 30.5% 741ms 19.6MiB 0.0% 49.0KiB

get_ranges 409 92.4ms 0.0% 226us 31.4MiB 0.0% 78.7KiB

rebuildStateStruct! 409 46.4s 4.7% 113ms 114GiB 96.7% 286MiB

repackStateVector! 409 20.5s 2.1% 50.0ms 658KiB 0.0% 1.61KiB

addToVertexFromBubble! 409 8.86s 0.9% 21.7ms 17.8MiB 0.0% 44.6KiB

symmetrizeBubble! 409 3.44s 0.3% 8.41ms 35.6MiB 0.0% 89.2KiB

get_Self_Energy! 409 508ms 0.1% 1.24ms 49.1MiB 0.0% 123KiB

symmetrizeVertex! 409 212ms 0.0% 519us 22.6MiB 0.0% 56.5KiB

getDFint! 409 2.18ms 0.0% 5.33us 0.00B 0.0% 0.00B

workspace 409 133us 0.0% 325ns 0.00B 0.0% 0.00B

setup 409 49.3us 0.0% 120ns 0.00B 0.0% 0.00B

16/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Results - 16 nodes - DP5

Time Allocations

Tot / % measured: 1655s / 99.9% 100GiB / 98.2%

Section ncalls time %tot avg alloc %tot avg

total solver 1 1653s 100.0% 1653s 97.7GiB 100.0% 97.7GiB

getDeriv! 278 1083s 65.5% 3.90s 77.9GiB 79.7% 287MiB

getXBubble! 278 1026s 62.1% 3.69s 145MiB 0.1% 535KiB

partition 278 952s 57.6% 3.42s 139MiB 0.1% 512KiB

communication 278 67.3s 4.1% 242ms 3.33MiB 0.0% 12.2KiB

get_ranges 278 11.7ms 0.0% 42.2us 2.64MiB 0.0% 9.72KiB

rebuildStateStruct! 278 29.8s 1.8% 107ms 77.7GiB 79.5% 286MiB

repackStateVector! 278 12.7s 0.8% 45.6ms 447KiB 0.0% 1.61KiB

addToVertexFromBubble! 278 5.96s 0.4% 21.5ms 12.1MiB 0.0% 44.6KiB

symmetrizeBubble! 278 2.27s 0.1% 8.17ms 24.2MiB 0.0% 89.2KiB

get_Self_Energy! 278 349ms 0.0% 1.25ms 33.4MiB 0.0% 123KiB

symmetrizeVertex! 278 159ms 0.0% 572us 15.3MiB 0.0% 56.5KiB

getDFint! 278 1.55ms 0.0% 5.59us 0.00B 0.0% 0.00B

workspace 278 203us 0.0% 731ns 0.00B 0.0% 0.00B

setup 278 30.1us 0.0% 108ns 0.00B 0.0% 0.00B

17/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Results - 4 Nodes - VCABM

made pull request to OrdinaryDiffEq to enable multithreading in all VCABM methods

Use PencilArrays.jl to make sure that the “internal solver” computation can be split between ranks

NOTHING changed.

18/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Trying to fix scaling with VCABM

https://github.com/SciML/OrdinaryDiffEq.jl/pull/2556

19/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Scaling Plot - DP5

Problems I experienced beforehand:

Autoformatting of expressions like −x would fail

OpenMPI, UCX and the Julia Garbage collectors conjure to make your program segfault (known problem
but I misread the docs or got tricked anyway)

Loading HDF5 afer MPI.Init() would cause linker problems, but the opposite would not.

Problems that other people had, they solved, and I used ther solution:

Pencil arrays did not originally implement global reductions across MPI ranks

(possibly many others)

What have I learned:
Packages only provide “leaky” abstractions, using a package does not mean you can ignore its internals

20/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Funny Issues along the road

https://github.com/domluna/JuliaFormatter.jl/issues/788
https://juliaparallel.org/MPI.jl/v0.20/knownissues/#Multi-threading-and-signal-handling
https://github.com/JuliaIO/HDF5.jl/issues/1079#issuecomment-2496279604
https://discourse.julialang.org/t/trouble-with-differentialequations-jl-using-mpi-with-the-integrator-interface/70356

(From Matias’ Gonzalez HiRSE talk, 26 Nov 2024, Berlin)

21/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Human Context, revisited

Work done:

Some performance characterization (@#$%@#$^!!#@!!)

Characterization tests (with Recorder.jl)

MPI Parallelization (Derivative computation)

Refactoring to streamline development
MPI Parallelization of Solver (?) with PencilArrays.jl

Good scaling with DP5
Problems with VCABM

To Do:

Clean and publish the code (probably in SciPost Physics Codebases)

Try to merge al lines of work together

Paused for now:

Performance Optimization

22/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Recap and Outlook

https://github.com/mmesiti/Recorder.jl
https://github.com/jipolanco/PencilArrays.jl
https://scipost.org/SciPostPhysCodeb

Thank you for listening.

23/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Recap and Outlook

Symmetries in the data structures
X has symmetries, which are used to reduce the computational load, but make efficient load balancing a
challenge (at least, in my implementation). In particular:

for is + it + iu = 2n (or 2n + 1), X [Rij, is, it, iu] = 0, but data is communicated anyway

for Xa,b,c , X [. . . , . . . , it, iu] = X [. . . , . . . , iu, it]: This makes load balancing difficult, at least in the current
implementation

How to exploit the symmetries?
Use 1D arrays instead of 4D, assign contiguous segments to MPI ranks, obtaining better load balance
write custom getter/setter functions so that the single index is mapped to (Rij, is, it, iu)

either define the mapping function as standalone
or create getter as a method of getindex and setter as a method of getindex! (see the Julia Array Interface) -
More elegant but I am not sure this can be done, or if it is a good idea.

24/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Computational approach: possible improvements I

https://github.com/mmesiti/PMFRG.jl/blob/4c9e266b6c1bfd0a134e2deffc28e640710e59c6/src/Flowequations_Dense.jl#L148
https://github.com/mmesiti/PMFRG.jl/blob/4c9e266b6c1bfd0a134e2deffc28e640710e59c6/ext/PMFRGMPIExt/Flowequation_Dense.jl#L5
https://github.com/mmesiti/PMFRG.jl/blob/4c9e266b6c1bfd0a134e2deffc28e640710e59c6/ext/PMFRGMPIExt/Flowequation_Dense.jl#L5
https://docs.julialang.org/en/v1/manual/interfaces/

Optimize SpinFRGLattices.jl
SpinFRGLattices produces the lookup/connectivity tables, it might be the key to improve the performance (In a
sense, the “Extreme Pareto” situation is not true)

Try code generation, giving the compiler more knowledge
The lookup tables are actually known when the program starts, so by using the JIT we could be able to
generate optimized code with this information.

25/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Computational approach: possible improvements II

Time Allocations

Tot / % measured: 1655s / 99.9% 100GiB / 98.2%

Section ncalls time %tot avg alloc %tot avg

total solver 1 1653s 100.0% 1653s 97.7GiB 100.0% 97.7GiB

getDeriv! 278 1083s 65.5% 3.90s 77.9GiB 79.7% 287MiB

getXBubble! 278 1026s 62.1% 3.69s 145MiB 0.1% 535KiB

partition 278 952s 57.6% 3.42s 139MiB 0.1% 512KiB

communication 278 67.3s 4.1% 242ms 3.33MiB 0.0% 12.2KiB

get_ranges 278 11.7ms 0.0% 42.2us 2.64MiB 0.0% 9.72KiB

rebuildStateStruct! 278 29.8s 1.8% 107ms 77.7GiB 79.5% 286MiB

repackStateVector! 278 12.7s 0.8% 45.6ms 447KiB 0.0% 1.61KiB

addToVertexFromBubble! 278 5.96s 0.4% 21.5ms 12.1MiB 0.0% 44.6KiB

symmetrizeBubble! 278 2.27s 0.1% 8.17ms 24.2MiB 0.0% 89.2KiB

get_Self_Energy! 278 349ms 0.0% 1.25ms 33.4MiB 0.0% 123KiB

symmetrizeVertex! 278 159ms 0.0% 572us 15.3MiB 0.0% 56.5KiB

getDFint! 278 1.55ms 0.0% 5.59us 0.00B 0.0% 0.00B

workspace 278 203us 0.0% 731ns 0.00B 0.0% 0.00B

setup 278 30.1us 0.0% 108ns 0.00B 0.0% 0.00B

26/26 Feb 26, 2025 Michele Mesiti: Incremental MPI Parallelization of a Julia Functional Renormalization Group code: a case study

Results - 4 Nodes - VCABM

	The PMFRG Code

