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Observations of galaxies



Cosmological Simulations

● Observations produce a lot of data

→ interpretation difficult

● Simulate galaxy formation using 
computational methods

● Assume cosmology, initial conditions 
and physical processes, then let it run

Good overview: Vogelsberger et al. 2019

Vogelsberger et al. 2019



Methods of comparing simulations and observations

Cosmological 
hydrodynamical simulation:

Particles with physical 
properties

IFU observation:
photon counts/ 
integrated light
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Other codes

● Forward 
modeling

● CPU only
● Usually very 

slow

SimSpin
Harborne et al. (2023)

Sarmiento et al. (2022)

GalCraft
Wang et al. (2023)

● Written in R
● Great documentation

● MaNGA mocks

● MW type galaxies
(not yet public)



Virtual telescope: RUBIX

https://astro-rubix.web.app/



What is different to already existing software

1. Computation time

2. Code structure: research software practice for good open source software

3. Forward modeling and inverse modeling

4. Applications in machine learning



1. Computing time



Speed Comparison

GalCraft (Wang et al 2023):

● 6 × 10⁶ particles approx. 1.4 
hours

● 24 Core CPU (2.5Ghz)

Rubix: 5.8 × 10⁶ particles

● 24-Core CPU: ~120s (40x)
● NVIDIA A100: ~10s (600x)

Galaxy: TNG50-1, Snapshot 99, Subhalo ID 15GalCraft RUBIX RUBIX

GPU

CPU

CPU

43 x faster

600 x faster



2. Code structure



Code structure behind RUBIX

A B C Dx y=f(x)

Input Output

pure JAX functions

f

linear pipeline



3.a Forward modeling





How to run the pipeline?

1. User configuration to specify e.g telescope, 
distance to galaxy, cosmology, SSP template

2. (Pipeline configuration)
3. Then simply run …

… and analyze the mock-data



TNG50-1, Snapshot 99, SSP: Mastar_CB19_SLOG_1_5, z = 0.15



3.b Inverse modeling



Inverse modeling

Use JAX auto differentiation

Toy example: 

- one pixel
- one particle
- just vary the metallicity



Inverse modelling: Metallicity

At age 10 Gyr (100), start metallicity 1.4e-2 (9), target metallicity 4.5e-4 (3)

Learning rate 0.001, tol 1e-8
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4. Machine learning applications



Gradient based optimization

Forward modeling
Model-based 
decoder: RUBIX

mock datacube Observed cube

Model 
grid

_

LOSS



Self-supervised simulation based inference for GECKOS

Forward modeling
Model-based 
decoder: RUBIX

mock 
datacube

Inverse modeling
Deep encoder
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Lessons learned from software development 
as PhD student



Spaghetti 
Code







https://www.ssc.uni-heidelberg.de/en/learning/ssc-program-ssc-fellows



Type annotationsDesign patternsContinuous integrationUnit tests

Guidelines we try to follow for RUBIX 

Good Code Quality (hopefully!)

Python language CPU and GPU 
compatible

Documentation

Takes a lot of time, but may be worth in the end

Profiling
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Pipeline run for 1000 stellar particles

Pipeline time 3.09 sec

Data preparation in the beginning 1 sec

Calculate spectra function 463 millisec
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Benefits of good code quality 

Good Code Quality (hopefully!)

Readable Configurable ReproducibleModularExtensible

Flexible Large user base Community 
developmentEasy to use



What we can conclude 



RUBIX

● Forward and inverse modeling of simulated galaxies and 
IFU data

● With help of the SSC Heidelberg: project developed to a 
good codebase

● Lots of effort into testing, integration, documentation
● Hopefully become a broadly used community tool

https://astro-rubix
.web.app/



Thank you!


