
 Fast GPU-powered and
auto-differentiable forward modeling for

cosmological hydrodynamical
simulations

Anna Lena Schaible
annalena.schaible@iwr.uni-heidelberg.de

https://astro-ru
bix.web.app/

Observations of galaxies

Cosmological Simulations

● Observations produce a lot of data

→ interpretation difficult

● Simulate galaxy formation using
computational methods

● Assume cosmology, initial conditions
and physical processes, then let it run

Good overview: Vogelsberger et al. 2019

Vogelsberger et al. 2019

Methods of comparing simulations and observations

Cosmological
hydrodynamical simulation:

Particles with physical
properties

IFU observation:
photon counts/
integrated light

Methods of comparing simulations and observations

Cosmological
hydrodynamical simulation:

Particles with physical
properties

IFU observation:
photon counts/
integrated light

Forward modeling

Methods of comparing simulations and observations

Cosmological
hydrodynamical simulation:

Particles with physical
properties

IFU observation:
photon counts/
integrated light

Forward modeling

Inverse modeling

Other codes

● Forward
modeling

● CPU only
● Usually very

slow

SimSpin
Harborne et al. (2023)

Sarmiento et al. (2022)

GalCraft
Wang et al. (2023)

● Written in R
● Great documentation

● MaNGA mocks

● MW type galaxies
(not yet public)

Virtual telescope: RUBIX

https://astro-rubix.web.app/

What is different to already existing software

1. Computation time

2. Code structure: research software practice for good open source software

3. Forward modeling and inverse modeling

4. Applications in machine learning

1. Computing time

Speed Comparison

GalCraft (Wang et al 2023):

● 6 × 10⁶ particles approx. 1.4
hours

● 24 Core CPU (2.5Ghz)

Rubix: 5.8 × 10⁶ particles

● 24-Core CPU: ~120s (40x)
● NVIDIA A100: ~10s (600x)

Galaxy: TNG50-1, Snapshot 99, Subhalo ID 15GalCraft RUBIX RUBIX

GPU

CPU

CPU

43 x faster

600 x faster

2. Code structure

Code structure behind RUBIX

A B C Dx y=f(x)

Input Output

pure JAX functions

f

linear pipeline

3.a Forward modeling

How to run the pipeline?

1. User configuration to specify e.g telescope,
distance to galaxy, cosmology, SSP template

2. (Pipeline configuration)
3. Then simply run …

… and analyze the mock-data

TNG50-1, Snapshot 99, SSP: Mastar_CB19_SLOG_1_5, z = 0.15

3.b Inverse modeling

Inverse modeling

Use JAX auto differentiation

Toy example:

- one pixel
- one particle
- just vary the metallicity

Inverse modelling: Metallicity

At age 10 Gyr (100), start metallicity 1.4e-2 (9), target metallicity 4.5e-4 (3)

Learning rate 0.001, tol 1e-8

Inverse modelling: Metallicity

At age 10 Gyr (100), start metallicity 1.4e-2 (9), target metallicity 4.5e-4 (3)

Learning rate 0.001, tol 1e-8

4. Machine learning applications

Gradient based optimization

Forward modeling
Model-based
decoder: RUBIX

mock datacube Observed cube

Model
grid

_

LOSS

Self-supervised simulation based inference for GECKOS

Forward modeling
Model-based
decoder: RUBIX

mock
datacube

Inverse modeling
Deep encoder

La
te

nt
 s

pa
ce

 /
pa

ra
m

et
er

 s
pa

ce

self-supervised

observed cube
Physical
model /

simulation

Lessons learned from software development
as PhD student

Spaghetti
Code

https://www.ssc.uni-heidelberg.de/en/learning/ssc-program-ssc-fellows

Type annotationsDesign patternsContinuous integrationUnit tests

Guidelines we try to follow for RUBIX

Good Code Quality (hopefully!)

Python language CPU and GPU
compatible

Documentation

Takes a lot of time, but may be worth in the end

Profiling

Type annotationsDesign patternsContinuous integrationUnit tests

Guidelines we try to follow for RUBIX

Good Code Quality (hopefully!)

Python language CPU and GPU
compatible

Documentation

Takes a lot of time, but may be worth in the end

Profiling

Pipeline run for 1000 stellar particles

Pipeline time 3.09 sec

Data preparation in the beginning 1 sec

Calculate spectra function 463 millisec

Type annotationsDesign patternsContinuous integrationUnit tests

Guidelines we try to follow for RUBIX

Good Code Quality (hopefully!)

Python language CPU and GPU
compatible

Documentation

Takes a lot of time, but may be worth in the end

Profiling

Type annotationsDesign patternsContinuous integrationUnit tests

Guidelines we try to follow for RUBIX

Good Code Quality (hopefully!)

Python language CPU and GPU
compatible

Documentation

Takes a lot of time, but may be worth in the end

Profiling

Benefits of good code quality

Good Code Quality (hopefully!)

Readable Configurable ReproducibleModularExtensible

Flexible Large user base Community
developmentEasy to use

What we can conclude

RUBIX

● Forward and inverse modeling of simulated galaxies and
IFU data

● With help of the SSC Heidelberg: project developed to a
good codebase

● Lots of effort into testing, integration, documentation
● Hopefully become a broadly used community tool

https://astro-rubix
.web.app/

Thank you!

