
∠ ∠

∠ ∠

∠ ∠

flowR

Assisting Data Analysis using Program Slicing with flowR
deRSE ’25 | Ulm University | Florian Sihler and Matthias Tichy ∣ February 26, 2025

The R Programming Language
Is Used
in Research[1]

Is Used
for Statistical Computing[2]

Is Used (mostly)
by Non-Programmers

• Lacks sophisticated static-analysis tools[3]

• Many powerful reflective capabilities[4]

• Incomplete language specification[5]

• Do not reproduce[1]

[1] Trisovic et al., “A Large-Scale Study on Research Code Quality and Execution” (2022, Nature Publishing Group)
[2] https://cran.r-project.org/
[3] Sihler et al., “Statically Analyzing the Dataflow of R Programs” (2024, ASE [submitted])
[4] Flückiger et al., “R melts brains: an IR for first-class environments and lazy effectful arguments” (2019, ACM DLS)
[5] R Core Team, R Language Definition (2023, online)

F. Sihler (Ulm University) flowR — Motivation 2

https://cran.r-project.org/

Problems of R

3

Scientific Data | (2022) 9:60 | https://doi.org/10.1038/s41597-022-01143-6

www.nature.com/scientificdata

www.nature.com/scientificdata/

 4. Finally, the results and information related to the re-execution are stored on DynamoDB (https://aws.

amazon.com/dynamodb).The collected data, source code and complete instructions to reproduce our analysis are available online at

Dataverse9 and GitHub under MIT license.Data collection workflow. For testing research code re-execution, we use a Docker image with pre-installed

conda environment manager, R and Python software on Debian GNU/Linux 10. The image contains three inde-

pendent R environments, each with a different version of the R interpreter and corresponding r-essentials, a bun-

dle of approximately 200 most popular R packages for data science. In addition to the software, the image contains

a custom-made workflow that conducts the study and collects data. The logic of the workflow is the following:

 1. It downloads a replication package from the Harvard Dataverse repository. We verify and note if the file

has correctly downloaded or if there was a checksum error. We collect data on the size and content of the

replication package. 2. We conduct an automatic code cleaning, scanning and correcting the code for some of the most common

execution errors, such as hard-coded path variables (see the next section). Statistics on code files, such as

the number of lines, libraries, and comments, are also collected.

 3. The workflow attempts to execute the researchers’ code for an allocated period of one hour per file and five

hours in total. The re-execution test is conducted with and without the code cleaning step, and the result

(success, error, or time-limit exceeded) is recorded.

 4. The re-execution results and other collected data are passed to the backend database for analysis.

Though a total of 2,170 replication packages contained R code and were visible through the Dataverse API,

we successfully retrieved 2109 (97%) of them. Some of these packages had restricted access and caused an’au-

thorization error’ when we attempted to retrieve them. In other cases, files had obscure and erroneous encoding,

which caused errors during the download. Those were excluded from our study.

Code cleaning. Our implementation of code cleaning aims to solve some of the most common re-execution

errors. In particular, it removes absolute file paths, standardizes file encoding, and identifies and imports used

libraries to set up a proper execution environment. The research code is modified to install the used library if it

is not already present in the environment. The code cleaning approach is kept relatively simple to minimize the

chance of ’breaking the code’ or creating errors that were not previously there. Readers can learn more about the

technical implementation of code cleaning in Appendix 3.
Results and Discussion
We define ten research questions to provide a framework for the study. The first group of questions revolves

around coding practices (RQ 1–3), while the other around the automated code re-execution (RQ 4–10).

RQ 1. What are the basic properties of a replication package in terms of its size and content? Our

first research question focuses on the basic dataset properties, such as its size and content. The average size of a

dataset is 92 MB (with a median of 3.2 MB), while the average number of files in a dataset is 17 files (the median

is 8). Even though it may seem that there is a large variety between datasets, by looking at the distributions, we

observe that most of the datasets amount to less than 10 MB (Fig. 3a) and contain less than 15 files (Fig. 3b).

Analyzing the content of replication packages, we find that about 40% of them (669 out of 2,091) contain

code in other programming languages (i.e., not R). Out of 2091 datasets, 620 contained Stata code (.do files), 46

1

EC2

2

3

4

DOI

Fig. 2 Implementation on the AWS Batch.

2

Scientific Data | (2022) 9:60 | https://doi.org/10.1038/s41597-022-01143-6

www.nature.com/scientificdata

www.nature.com/scientificdata/

the common errors are in executing this code and whether they can be solved with simple changes in the code.

We explore if the code re-execution rates vary between different disciplines and other available features, and

analyze the practices behind the best-performing ones. Finally, we explore code re-execution as a required but

not sufficient condition for reproducibility. Based on the study’s findings, we conclude with recommendations

for disseminating research code for researchers, journals, and repositories.BackgroundOur study uses code deposited and shared at the Harvard Dataverse repository. The Dataverse project (http://

dataverse.org) is an open-source data repository platform for sharing, archiving, and citing research data. It is

developed and maintained by the Harvard’s Institute for Quantitative Social Sciences (IQSS) and a community

of open source contributors. Currently, more than 60 institutions worldwide run Dataverse instances as their

data repository, each hosting data generated by one or more institutions.
Dataverse repositories allow researchers to deposit and share all research objects, including data, code, docu-

mentation, or any combination of these files. A bundle of these files associated with a published scientific result

is called a replication package (or “replication data” or dataset in Dataverse repositories). Researchers’ code from

replication packages usually operates on data to obtain the published result. For the Harvard Dataverse repos-

itory, replication packages are typically prepared and deposited by researchers themselves in an unmediated

fashion (self-curated).The most popular programming languages among the Harvard Dataverse repository users are Stata and R, as

shown from the frequency of deposited code files in Fig. 1. The two languages are often used in quantitative social

science research. Their observed popularity can be attributed to Harvard Dataverse repository initially specializing

in sharing social science research data. In the last five years, it has become a general-purpose, inter-disciplinary

data repository. Stata is proprietary statistical software used in economics, sociology, political science, and health

sciences. R is free and open-source software frequently used among statisticians and data analysts in the social

sciences. Due to its popularity among academics and its open-source license, R is an ideal candidate for our study.

It is currently ranked as the 13th most popular language in the TIOBE index (https://www.tiobe.com/tiobe-index).

In the past, it was ranked as the most popular language7 and has been rated among the top in the Kaggle Machine

Learning & Data Science Survey in the previous few years8. R originated as an open-source and free version of S,

a statistical command language that made programming accessible without the necessity of formal training. R is

highly adaptable due to its extensible package system, which led to a surge of community-driven developments.

Although the broad community development created potential for unsustainable code, methods for package stand-

ardization and quality control have been improving with the creation of RStudio, an integrated development envi-

ronment (IDE) for R, and online communities like R-Hub and ROpenSci.Implementation and MethodsThe R programming language is the main focus of our study due to its open-source license and popularity in

scientific computing. We retrieve the content of 2109 publicly-available replication packages published from

2010 to July 2020 that contain 9078 R code files from the Harvard Dataverse repository. The Harvard Dataverse

archives more than 40,000 datasets containing over 500,000 files at the time of writing. The rest of the datasets,

over 65,000, are harvested from other federated repositories. For our analysis, we use only the deposited datasets

(not harvested) due to the metadata differences across different repositories. Below, we elaborate on the study’s

implementation, workflow, and data collection.We use AWS Batch (https://aws.amazon.com/batch) to parallelize the effort of retrieving and re-executing

research code in each replication package. AWS Batch automatically provisions resources and optimizes the

workload distribution while executing jobs without interactions with the end-user. All replication packages in

the Harvard Dataverse repository are uniquely identified with a DOI (digital object identifier), and we start the

analysis by retrieving the list of DOIs that contain R code (Fig. 2). 1. The DOI list is used to define the AWS jobs, which are then sent to the batch queue, waiting until resources

become available for their execution. 2. When a job leaves the queue, it instantiates a pre-installed Docker image that contains the necessary soft-

ware pipeline to retrieve a replication package and execute its R code.
 3. Each job re-executes code from a single replication package using an Amazon EC2 instance with 16 vCPUs

and 1024 GB of memory.

Fig. 1 Most popular code file types on Harvard Dataverse (Oct, 2020). Of the top two, R is open source and free.

1Scientific Data | (2022) 9:60 | https://doi.org/10.1038/s41597-022-01143-6

www.nature.com/scientificdata

a large-scale study on research
code quality and execution
ana trisovic 1 ✉, Matthew K. Lau 2, thomas Pasquier 3 & Mercè Crosas1

this article presents a study on the quality and execution of research code from publicly-available
replication datasets at the Harvard Dataverse repository. Research code is typically created by a
group of scientists and published together with academic papers to facilitate research transparency
and reproducibility. For this study, we define ten questions to address aspects impacting research
reproducibility and reuse. First, we retrieve and analyze more than 2000 replication datasets with
over 9000 unique R files published from 2010 to 2020. Second, we execute the code in a clean runtime
environment to assess its ease of reuse. Common coding errors were identified, and some of them
were solved with automatic code cleaning to aid code execution. We find that 74% of R files failed
to complete without error in the initial execution, while 56% failed when code cleaning was applied,
showing that many errors can be prevented with good coding practices. We also analyze the replication
datasets from journals’ collections and discuss the impact of the journal policy strictness on the
code re-execution rate. Finally, based on our results, we propose a set of recommendations for code
dissemination aimed at researchers, journals, and repositories.

Introduction
Researchers increasingly publish their data and code to enable scientific transparency, reproducibility, reuse,
or compliance with funding bodies, journals, and academic institutions1. Reusing data and code should propel
new research and save researchers’ time, but in practice, it is often easier to write new code than reuse old. Even
attempting to reproduce previously published results using the same input data, computational steps, methods,
and code has shown to be troublesome. Studies have reported a lack of research reproducibility2,3 often caused
by inadequate documentation, errors in the code, or missing files.

Paradigms such as literate programming could help in making the shared research code more understand-
able, reusable, and reproducible. In literate programming, traditional source code is interspersed with explana-
tions of its logic in a natural language4. The paradigm was encouraged for scientific computing and data science
to facilitate reproducibility and transparency. However, in practice, researchers write code intending to obtain
scientific insights, and there is often no incentive to structure and annotate it for reuse. As a result, the research
code quickly becomes unusable or unintelligible after meeting its initial purpose5.

Though much of the code’s intrinsic design will determine its longevity, its dissemination platform could
also have a compelling influence6. In particular, data and code repositories are some of the primary venues for
sharing research materials. They aim to support researchers by creating general dissemination guidelines and
descriptive metadata, but they cannot always prevent irreproducibility and code-rot due to the vast diversity of
programming languages and complex computing processes. This is only aggravated as researchers generate and
share new results and code at a rate higher than ever before.

This paper presents a study that provides an insight into the programming literacy and reproducibility
aspects of shared research code. The first premise of the study is to examine the properties of the shared datasets
and research code. Information such as their size, content, presence of comments in the code, and documenta-
tion in the directory help us understand the current state of research code. By comparing the observed coding
practices to the established best practices, we identify the existing weak points and areas of improvement for
researchers writing code. Our content analysis gives us an insight into the storage needs and requirements for
supporting files, such as documentation, images, or maps. The second premise of the study is to examine what
happens when an external researcher retrieves and re-executes shared research code. In particular, we ask what

1institute for Quantitative Social Science, Harvard University, cambridge, MA, USA. 2cAS Key Laboratory of
forest ecology and Management, institute of Applied ecology, chinese Academy of Sciences, Shenyang, china.
3Department of computer Science, University of British columbia, Vancouver, Bc, canada. ✉e-mail: anatrisovic@g.
harvard.edu

AnAlySiS

OPEN

[1] Reproducibility
74 % do not run

library(ggplot2)
library(magrittr)
setwd("C:/Users/Example/Study")
load("data.RData")
penguins ← data %>%

dplyr :: filter(species == "penguin")
t.test(size ~ species, data=penguins)
ggplot(penguins, aes(x=size, y=weight)) +

geom_histogram(bins=42)

Under-specified Versions

Hardcoded Paths

. . .

. . .

. . .

. . .

. . .

. . .

R Melts Brains

DLS ’19, October 20, 2019, Athens, Greece

We leave the reader with a rather amusing brain twister.

R has context-sensitive lookup rules for variables in call po-

sition. Variables that are not bound to functions are skipped:

f <- function(c) {c(1, 2) + c}

f(3)

The lookup of c in c(1,2) skips the argument c, since it is

not a function. Instead, primitive c() is called to construct

a vector. The second read of c is not in call position, thus it

returns argument c, 3 in this case. The result is the vector

[4,5] as addition is vectorized. Now, consider the following

variation:
bad <- function() rm(list="c", envir=sys.frame(-1))

f(bad())

This time evaluation ends with an error as we try to add

a vector and a function. Evaluation of c(1,2) succeeds and

returns a vector. But, during the lookup of c for that call,

R first encounters the argument c. In order to check if c is

bound to a closure, it evaluates the promise, causing bad()

to delete the argument from the environment. On the second

use of c, the argument has been removed and a function

object, c, is returned.
2.3 Related WorkR has one reference implementation, GNU R, and several

alternative implementations. GNU R includes a bytecode

compiler with a small number of carefully tuned optimiza-

tions [17]. Unlike ours, GNU R’s bytecode implicitly assumes

the presence of an environment for every function applica-

tion. Variable lookup, in the worst case, requires inspecting

all bindings of each environment in scope. To mitigate the

lookup cost, GNU R caches bindings when safe. FastR’s first

version featured a type-specializing tree interpreter that out-

performed GNU R [6]. It split environments into a statically

known part (represented by arrays with constant-time ac-

cesses) and extensions that could grow and shrink at runtime.

Environments were marked dirty whenever a reflective oper-

ation modified them. The second version of FastR uses Truf-

fle for specialization and Graal for code generation [14, 20].

Graal’s intermediate representation is general purpose [3].

FastR speculatively specializes the code based on profile-

driven global assumptions. For instance, functions exhibiting

a runtime stable binding structure are compiled under that

assumption. The compiler elides environments and stores

variables on the stack. Code is added to detect violation of

assumptions and trigger deoptimization. Type specialization

was also used in the ORBIT project, an attempt at extending

GNU R with a type specializing bytecode interpreter [19].

On the other hand, the Riposte compiler tried to speed up

R by recording execution traces for vector operations [16].

Riposte performed liveness analysis on the recorded traces

to avoid unnecessary vector creations and parallelize code.

None of these alternatives provides any special treatment

for environment bindings. Our work departs from all these

efforts in that we provide explicit support for environments

and promises in the compiler IR. This allows us to combine

static reasoning (when feasible) with speculative optimiza-

tions (when needed).Other languages have some of the same features R has

but, usually, are more amenable to compilation. Julia resem-

bles R in that it is dynamically typed, reflective, and targets

scientific computing. But, as shown by Bezanson et al. [1],

it exhibits much better performance. This is due to a com-

bination of careful language design and an implementation

strategy that focuses on type specialization, inlining, and un-

boxing. Julia does not have lazy evaluation, it restricts eval

to execute at the top level, and limits reflection. Another ex-

ample is JavaScript. While it is also dynamic, the only way to

add variables to a scope is using eval, which can only do so

locally. Serrano [13] performs static reasoning on JavaScript

by relying on type specialization and occurrence typing [18],

as well as rapid atomic type analysis [8]. Whenever types

cannot be statically determined, the compiler assumes the

most likely structures ahead of time and relies on specula-

tive guards for soundness. Smalltalk also features first-class

contexts, although adding bindings at runtime is not sup-

ported. The Cog VM [10] maps context objects to the native

stack and materializes contexts on demand when they are

reflectively accessed.
3 An Intermediate Representation for R

We provide an example-driven explanation of PIR before the

formal introduction. For readers who prefer a bottom-up ex-

planation, we suggest starting with section 4. We distinguish

between source-level R variables, which we call variables,

and PIR local variables, called registers. Variables are stored

in environments while the implementation of registers is left

up to the compiler, and reflective access is not provided.
3.1 Scope Resolution to Lower Variables

We start with an example to illustrate how R variables are

modeled, and if possible lowered to registers. We use the

following simple function definition:function() { answer <- 42; answer }
The function defines a local variable and returns its value. It

translates to the following PIR instructions:e0 = MkEnv (: G)%1 = LdConst [1] 42StVar (answer, %1, e0)
%3 = LdVar (answer, e0)
%4 = Force (%3) e0Return (%4)

First, MkEnv creates an empty environment nested in G, the

global environment. As all values are vectorized, 42 is loaded

as a vector of length 1. StVar updates environment e0 with57

DLS ’19, October 20, 2019, Athens, Greece

Flückiger, Chari, Ječmen, Yee, Hain, Vitek

R programs. Unsurprisingly, existing implementations resort
to dynamic techniques to optimize code [6, 14, 16, 19].The contribution of this paper is the design of PIR, an in-
termediate representation (IR) for R programs with explicit
support for environments and lazy evaluation. PIR is a static
single assignment (SSA) [12] code format inspired by our
experience with the bytecode of the GNU R reference im-
plementation, earlier work on FastR [6], the sourir IR we
developed to model speculative optimizations [4], and an
earlier attempt to optimize R using LLVM. In our experience,
some of the most impactful optimizations are high-level ones
that require understanding how values are used across func-
tion boundaries. We found that the GNU R bytecode [17]
was too high level; it left too many of the operations implicit.
In contrast, we found LLVM’s IR [7] too low level for easily
expressing some of our target optimizations.PIR is part of Ř, a new just-in-time compiler for the R
language. To motivate its need, we start with background
on R and on related efforts in section 2. We give an informal
overview of PIR in section 3. Then, section 4 details PIR and
presents two transformation passes. The first, scope resolu-
tion, statically resolves bindings, and the second, promise
inlining, removes lazy argument evaluation. Finally, section 5
illustrates how PIR helps Ř1 reduce overheads. Our compiler
is not complete and we are not yet able to run at competitive
speed, so the results should be considered preliminary. Ř is
available at https://github.com/reactorlabs/rir.
2 Background
This section describes key properties of environments and
promises, and discusses work that deals with similar issues.2.1 Environments in RInspired by Scheme and departing from its predecessor S, R
adopted a lexical scoping discipline [5]. Variables are looked
up in a list of environments. Consider this snippet:g <- function(a) {

f <- function() x+yif (a) x <- 2
f()

}
y <- 1

The evaluation of x+y requires finding x in the enclosing
environment of the closure f, and y at the top level. It is
worth pointing out that, while R is lexically scoped, the scope
of a free variable cannot be resolved statically. For instance,
x will only be in scope in g if the argument a evaluates to
true.
R uses a single namespace for functions and variables. En-

vironments are used to hold symbols like +. While primarily1Pronounced like a trilled “r”, the sound one makes upon realizing that
arguments can modify the environment of the function they are given to.

used for variables, environments can also be created explic-
itly, e.g., to be used as hashmaps. Libraries are loaded by
the attach() function that adds an environment to the list
of environments. A number of operations allow interaction
with environments: environment() accesses the current envi-
ronment; ls(...) lists bound variables; assign(...) adds or
modifies a binding; and rm(...) removes variables from an
environment. R has functions to walk the environment chain:
parent.frame() returns the environment associated with the
caller’s call frame and sys.frame(...) provides access to the
environment of any frame on the call stack. In R, frames
represent function invocations and they have references to
environments. Consider this code:
f <- function() get("x", envir=parent.frame())
g <- function() {x <- "secret"; f()}Function f uses reflection to indirectly access g’s environ-

ment. This illustrates that any callee may access (and change)
the caller environment.
2.2 Laziness in R
Since its inception, R has adopted a call-by-need evaluation
strategy (also called lazy evaluation). Each expression passed
as argument to a function is wrapped in a promise, a thunk
that packages the expression, its environment, and a slot to
memoize the result of evaluating the expression. A promise is
only evaluated when its value is needed. Consider a function
that branches on its second argument:f <- function(a, b) if(b) a
A call f(x<-TRUE,x) creates two promises, one for the assign-
ment x<-TRUE, and one to read x. One could expect this call
to return TRUE, but this is not so. The condition is evaluated
before variable x is defined, causing an error to be reported.
Combined with promises, the sys.frame function allows non-
local access to environments during promise evaluation:f <- function() sys.frame(-1)g <- function(x) xg(f())

Here g receives promise f() as argument. When the promise
is forced, there will be three frames on the stack: frame 0 is
the global scope, frame 1 is g’s, and frame 2 is f’s frame.

0: g(f())
1: x

2: sys.frame(-1)

During promise evaluation, parent.frame refers to the frame
where the promise was created (frame 0 in this example,
as promise f() occurs at the top level). But, sys.frame(-1)
accesses a frame by index, ignoring lexical nesting, thus
extracting the environment of the forcing context, i.e., the
local environment of g at frame 1.

56

R Melts Brains
An IR for First-Class Environments and Lazy Effectful Arguments

Olivier Flückiger
Northeastern University

Guido Chari
Czech Technical University

Jan Ječmen
Czech Technical University

Ming-Ho Yee
Northeastern University

Jakob Hain
Northeastern University

Jan Vitek
Northeastern / Czech Technical U.

Abstract
The R programming language combines a number of fea-
tures considered hard to analyze and implement efficiently:
dynamic typing, reflection, lazy evaluation, vectorized prim-
itive types, first-class closures, and extensive use of native
code. Additionally, variable scopes are reified at runtime as
first-class environments. The combination of these features
renders most static program analysis techniques impractical,
and thus, compiler optimizations based on them ineffective.
We present our work on PIR, an intermediate representa-
tion with explicit support for first-class environments and
effectful lazy evaluation. We describe two dataflow analyses
on PIR: the first enables reasoning about variables and their
environments, and the second infers where arguments are
evaluated. Leveraging their results, we show how to elide
environment creation and inline functions.

CCS Concepts • Software and its engineering→Com-
pilers.

Keywords IR, first-class environment, lazy evaluation, R
ACM Reference Format:
Olivier Flückiger, Guido Chari, Jan Ječmen, Ming-Ho Yee, Jakob
Hain, and Jan Vitek. 2019. R Melts Brains: An IR for First-Class En-
vironments and Lazy Effectful Arguments. In Proceedings of the 15th
ACM SIGPLAN International Symposium on Dynamic Languages
(DLS ’19), October 20, 2019, Athens, Greece. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3359619.3359744

1 Introduction
The R language [11] presents interesting challenges for im-
plementers. R is a dynamic imperative language with vector-
ized operations, copy-on-write of shared data, a call-by-need
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
DLS ’19, October 20, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6996-1/19/10. . . $15.00
https://doi.org/10.1145/3359619.3359744

evaluation strategy, context-sensitive lookup rules, multiple
dispatch, and first-class closures. A rich reflective interface
and a permissive native interface allow programs to inspect
and modify most of R’s runtime structures. This paper fo-
cuses on the interplay of first-class, mutable environments
and lazy evaluation. In particular, we focus on their impact
on compiler optimizations.

One might see the presence of eval as the biggest obstacle
for static reasoning. With eval, text can be turned to code
and perform arbitrary effects. However, the expressive power
of eval can be constrained by careful language design. Julia,
for instance, has a reflective interface that does not ham-
per efficient compilation [1]. Even an unconstrained eval

is bound by what the language allows; for example, most
programming languages do not allow code to delete a vari-
able. Not so in R. Consider one of the most straightforward
expressions in any language, variable lookup:

f <- function(x) x

In most languages, it is compiled to a memory or register
access. From the point of view of a static analyzer, this ex-
pression usually leaves the program state intact. Not so in R.
Consider a function doubling its argument:

g <- function(x) x+x

In most languages, a compiler can assume it is equivalent
to 2*x and generate whichever code is most efficient. At the
very least, one could expect that both lookups of x resolve
to the same variable. Not so in R.

Difficulties come from two directions at once. R variables
are bound in environments, which are first-class values that
can be modified. In addition, arguments are evaluated lazily;
whenever an argument is accessed for the first time, it may
trigger a side-effecting computation – which could modify
any environment. Consequently, to optimize the body of a
function, a compiler must reason about effects of the func-
tions that it calls, as well as the effects from evaluating its
arguments. In the above example, `+` could walk up the call
stack and delete the binding for variable x. One could also
call gwith an expression that deletes x and causes the second
lookup of x to fail. While unlikely, a compiler must be ready
for it. Considering these examples in combination with eval,
it is impossible to statically resolve the binding structure of

55

[4] Dynamic Features
Reflectiveness, . . .

2. BACKGROUND AND KEY ISSUES

Next, we present background related to how R works. In

addition, to motivate the optimizations discussed in Sec-

tion 5, we also discuss the key causes for space and time

inefficiencies in the R interpreter.2.1 InterpretationR is an interpreted language. Program statements are in-

terpreted by an eval function that looks up values of sym-

bols and implementation of operators while evaluating the

expression in the given environment. Interpretation of every

operator results in a call to a function that implements the

operator. For example, an expression of the form a+b will re-

sult in a lookup for the + operator and the internal function

do_arith will be called to perform the operation. Expres-

sions such as a[x] result in calling the do_subset function or

the do_subassign function. Repeated lookups and function

calls can be very expensive, particularly when they happen

repeatedly, e.g, in loops. This interpretive nature of R re-

sults in the creation of a large number of temporary variables

that can have a very high execution overhead. An example

illustrating this issue is shown in Appendix A.

Compiling R code to C/C++ is a known technique to

improve efficiency [25, 26, 27, 43, 44]. Generating C/C++

code and executing compiled code leads to significant perfor-

mance improvements to R programs. One important chal-

lenge in automatic translation of R programs to C/C++ is

to statically determine variable types in the program/target

subroutine so that proper declarations, object iterators, and

access methods can be generated. Translation to C/C++

is not possible without type information. Simple type infer-

encing can be helpful, as illustrated in Appendix A.

2.2 Copy-on-write Semantics
In an assignment of the form y <- x, both x and y point

to the same memory location, unless one of them is written

to, in which case a copy is made. However, a copy may

not be needed if the other variable is not live beyond that

point; i.e., its value is no longer needed. Restricting copies

can save memory space especially when dealing with large

objects, such as long vectors.
Listing 2: Copy-On-Write

�
�

1 n <- 1e82 x <- rep(1,n)3 y <- x4 x[2] <- 35 y[2] <- 3�
�

The Copy-On-Write example, Listing 2, illustrates how

live variable analysis can reduce memory overheads. Due

to the copy-on-write semantics of R, the assignment on line

3 does not create a new allocation, but the assignments on

lines 4 and 5 do. The R interpreter internally maintains a

named field for every S-expression. The value of this field

can be 0 (not shared), 1 (internal use), or 2 (may be shared).

The assignment on line 3 sets the named field to 2 for the

object pointed to, in this case, the long vector. The assign-

ments on lines 4 and 5 notice that there may be a shared

value, and creates copies of the vector with the named field

set to 0 in the copies. The copy on line 5 can always be

avoided, but R does not track the set of variables that point

to the same object. Hence, it cannot determine that after

line 4, x and y are no longer aliased. Moreover, if x and

y no longer live beyond line 4, then the copy on line 4 can

be avoided. In fact, the assignment on line 4 need not be

performed in this example.
Instead of copy-on-write, a more efficient semantic would

be to have copy-on-write-and-live-sharers. That is, a copy is

needed during modification of an aliased object only if some

of the other aliases may live beyond that point.

2.3 Attribute Evaluations
R maintains attributes (meta-data) for each object. Some

important attributes are “class” (class of the object) used by

a dispatch function, “dim” (dimension) used for arrays and

matrices, “dimnames” (names of dimensions), “rownames”,

“colnames”, “names”, and “tsp” used for time-series objects.
Listing 3: Kmeans [42]

�
�

1 A <-read.table(file="airline150M.csv",

sep=",", header=T, nrows

=149545445 ,...)
2 gc(T)3 system.time(result <- kmeans(na.omit(A)

,2,iter.max=1000, algorithm="Lloyd"))

4 gc(T)�
�

Some computation is performed by the R interpreter to

maintain attributes during interpretation of an R program.

Depending on the size of the object and the attribute, this

step can be quite costly. An illustrative example of this

overhead for the Kmeans program, Listing 3, is shown in

Appendix B where we discuss how implicit conversion from

a dataframe object to a matrix can be inefficient. In Sec-

tion 6 we present a reduction transformation to avoid this

overhead.

Listing 4: Unique Genotypes Test [39,40]

�
�

1 NG.test <- function(X,N,n,reps){

2
L <- length(X)

3
G <- numeric ()

4
for(i in 1:reps){

5
genos <- matrix(NA,N,L)

6
for(j in 1:L){

7
genos[,j] <- sample(c(0,1),size=N,

replace=TRUE ,prob=c(1-X[j],X[j])

)8
}9
geno.c <- numeric ()

10
for(j in 1:N){

11
geno.c[j] <- paste(genos[j,],sep=

"",collapse="")

12
}13
G[i] <- length(unique(geno.c))

14
}15

G
16 }
17
18 X <- rbeta (29 ,.2 ,.2)

19 N <- 2920 n <- 1521 reps <- 100000
22 system.time(xx <- NG.test(X=X,N=N,n=n,

reps=reps))
�

�3

Table 1: Static analyses techniques, with the associated Optimizations in square brackets, for our workloads. For example, the

Simple Arithmetic program is improved by the Space Reuse optimization which is enabled by live variable and alias analyses.

Analysis [Optimizations]

Workload
Status

Type Inference [Translation to C++ code and compilation]

Binary Search
Automated2D Random Walk AutomatedEuclidean Distance AutomatedOddCount

AutomatedExponential Smoothing AutomatedDiscrete Value Time Series, ver. A AutomatedDiscrete Value Time Series, ver. B Automated

Live Variable and Alias Analyses [Space Reuse]
Simple Arithmetic Automated

Reaching Definitions Analysis [Vectorization + Code Motion]
Simple Vectorization Automated

Type Inference [Strength Reduction (Float → Int)]

Unique Genotypes Test
User-Input

Type Inference [Strength Reduction (Float → String)]

User-Input

Type Inference [Strength Reduction (Float → String) + Code Motion]

User-Input

Type Inference [Strength Reduction (DataFrame → Matrix)]
Kmeans

User-Input

Loop Analysis [Loop Tiling]
Matrix Multiplication User-Input

R Code +
Inputs

Evaluation

Static Analyzer

Program
Properties

Optimizer

TR
A

D
IT

IO
N

A
L

ROSA

Figure 1: System Architecture

To illustrate, with our Space Reuse optimization, the R
interpreter can process the Simple Arithmetic program dis-
cussed above with 18 billion elements.A crucial aspect of our design is that large parts of it
can work without requiring modifications to the existing R
programs. This aspect is important as a big driver behind
the popularity of R is the large code base of user code and
CRAN packages that are already deployed. Our approach
is to use a compiler-based approach as outlined in Figure 1.

The left side of Figure 1 shows a high-level schematic of
the traditional workflow for executing R programs. The
right side of this figure shows the new workflow with ROSA.
In the traditional workflow, the R interpreter directly eval-
uates the given R program and its inputs. During evalu-
ation it executes any precompiled portions directly on the
host machine. In ROSA, the program along with its inputs
is first analyzed by the Static Analyzer to determine vari-
ous properties at each point in the program. These proper-
ties can then be inspected by the ROSA Optimizer for vari-
ous transformations, e.g., vectorization, code motion, C++
code translation, etc. This optimized code is then evaluated.
The inferred program properties are also used during evalu-
ation by the R interpreter to avoid making redundant object
copies and perform in-place computations, if possible.

Our system automates the optimizations shown in Table 1
that are marked with the status tag ‘Automated’; i.e. these
techniques work without requiring any changes to existing R
programs. Due to inherent characteristics of the R language
(discussed further in Section 6.2), the remaining optimiza-
tions require user feedback. However, we note that even
unmodified program can benefit dramatically with ROSA,
as demonstrated by the results presented in Section 6.

The key contributions of this paper are as follows.1. We propose the ROSA framework that integrates compiler-
based optimization techniques with R’s evaluation frame-
work. We demonstrate using an empirical evaluation
that ROSA improves performance, and has a smaller
memory footprint compared with both Microsoft R
Open and CRAN R.

2. We propose a type inferencing system that generates
crucial information necessary for automated transla-
tion of R programs to efficient C++ code. While
speeding up of R programs using C++ code is known,
type inferencing for automated translation into C++
code has not been hitherto explored. Type inferencing
information is also useful for vectorization and strength
reduction transformations.

3. We show how enhancements to the R interpreter, that
utilize live variable analysis and alias analysis infor-
mation, can overcome the space inefficiencies of the
existing copy-on-write policy of R. We also highlight
the importance of strength reduction transformations
in improving performance of R programs by reducing
or eliminating costly type-conversion operations.The remainder of this paper is organized as follows. Sec-

tion 2 presents the required preliminaries. Section 3 presents
a more detailed architecture of ROSA. Section 4 describes
relevant static analysis techniques. Section 5 describes the
optimizations that use the inferred program properties. Sec-
tion 6 presents empirical results. Section 7 covers related
work and Section 8 contains our concluding remarks. The
Appendix includes code for the R programs that we use.

2

ROSA: R Optimizations with Static Analysis

Rathijit Sen
∗ †

Jianqiao Zhu
‡

Jignesh M. Patel
‡

Somesh Jha
‡

†
Gray Systems Lab

‡
Department of Computer Sciences

Microsoft Corporation University of Wisconsin-Madison
rathijit.sen@microsoft.com {jianqiao,jignesh,jha}@cs.wisc.edu

ABSTRACT
R is a popular language and programming environment for
data scientists. It is increasingly co-packaged with both re-
lational and Hadoop-based data platforms and can often be
the most dominant computational component in data ana-
lytics pipelines. Recent work has highlighted inefficiencies
in executing R programs, both in terms of execution time
and memory requirements, which in practice limit the size of
data that can be analyzed by R. This paper presents ROSA,
a static analysis framework to improve the performance and
space efficiency of R programs. ROSA analyzes input pro-
grams to determine program properties such as reaching def-
initions, live variables, aliased variables, and types of vari-
ables. These inferred properties enable program transfor-
mations such as C++ code translation, strength reduction,
vectorization, code motion, in addition to interpretive opti-
mizations such as avoiding redundant object copies and per-
forming in-place evaluations. An empirical evaluation shows
substantial reductions by ROSA in execution time and mem-
ory consumption over both CRAN R and Microsoft R Open.

1. INTRODUCTION
R is a popular programming language for data analy-

sis [30,37,41,47]. It is the most popular data mining tool [16],
and is the third-most used data analysis language after SQL
and Excel [32]. R is also nearly always co-packaged/embedded
with Hadoop and relational data processing platforms (e.g., [4,
9, 10, 15, 17, 18, 22]), making it a crucial part of contempo-
rary data analytics workflows. Given the close integration
of R and databases, speeding up R has been a recurring
topic in the database research community [42, 52, 53], and
this research follows that line of thinking.

R has a dynamic, lazy, functional, object-oriented lan-
guage semantics [37], and is interpreted [20]. Although highly
expressive, interpretive execution of R programs has space
and runtime inefficiencies [34,42] that are overwhelming when

∗Work done while at UW-Madison

analyzing large datasets [42], limiting the size of the datasets
that can be analyzed with R.

For example, consider the Simple Arithmetic program in
Listing 1 that computes the distances from a given point
to a list of points. This program uses two lists (x and y)
of 1 Billion elements (n <- 1e9) each. Increasing the list
sizes to 9 Billion elements causes the R interpreter to abort
evaluation on our system with 256 GB of memory, as the
program runs out of memory. This behavior is surprising
since the two lists have a total of 18 Billion (8 byte) double-
precision elements, thus requiring less than 140 GB of main
memory. However, when we run this program on a machine
with 256 GB of main memory, the program crashes as it runs
out of memory space. There are significant overheads in the
R interpreter, and these issues surface prominently when
R code is packaged with data platforms that manage large
datasets. Thus, improving the behavior and performance of
R programs is crucial for contemporary data platforms.

Listing 1: Simple Arithmetic in R (program from [42,52])� �
1 n <- 1e9

2 xs <- 0.5

3 ys <- 0.5

4 x <- runif(n)

5 y <- runif(n)

6 d <- sqrt((x-xs)^2+(y-ys)^2)� �
The focus of this paper is on exploring if the limitations of

R discussed above can be mitigated by using compiler tech-
niques (such as [35, 44, 49]). To the best of our knowledge
there hasn’t been any previous study that catalogs the list
of potentially applicable compiler techniques that are appli-
cable in this setting, and systematically determines which of
these can be made to work synergistically with each other
and with the idiosyncrasies that come with the R language.
A key contribution of our paper is addressing this gap. Ta-
ble 1 shows a list of static analyses and corresponding opti-
mizations that we have developed in this paper to address
this research question.

Implementing these techniques can be challenging. One
can certainly build each technique individually as a stan-
dalone technique/package, but a better way is to incorporate
these techniques as first-class analyses into a compiler. This
integrated compiler-based approach is what we take in this
paper, creating an R-optimization framework called ROSA.
This integrated approach enhances ease-of-use for the end
user, and also enables reuse of analysis results across op-
timizations; e.g., type inferencing results can be used for
vectorization, strength reduction, and code translation.

1

ar
X

iv
:1

70
4.

02
99

6v
2

 [
cs

.P
L

]
 3

 J
ul

 2
01

7

[7] Little Tool Support
No sophisticated analysis

[7] Sen et al., ROSA: R Optimizations with Static Analysis (2017, arXiv)
[4] Flückiger et al., “R melts brains: an IR for first-class environments and lazy effectful arguments” (2019, ACM DLS)
[1] Trisovic et al., “A Large-Scale Study on Research Code Quality and Execution” (2022, Nature Publishing Group)

F. Sihler (Ulm University) flowR — Motivation 3.1

Problems of R

3

Scientific Data | (2022) 9:60 | https://doi.org/10.1038/s41597-022-01143-6

www.nature.com/scientificdata

www.nature.com/scientificdata/

 4. Finally, the results and information related to the re-execution are stored on DynamoDB (https://aws.

amazon.com/dynamodb).The collected data, source code and complete instructions to reproduce our analysis are available online at

Dataverse9 and GitHub under MIT license.Data collection workflow. For testing research code re-execution, we use a Docker image with pre-installed

conda environment manager, R and Python software on Debian GNU/Linux 10. The image contains three inde-

pendent R environments, each with a different version of the R interpreter and corresponding r-essentials, a bun-

dle of approximately 200 most popular R packages for data science. In addition to the software, the image contains

a custom-made workflow that conducts the study and collects data. The logic of the workflow is the following:

 1. It downloads a replication package from the Harvard Dataverse repository. We verify and note if the file

has correctly downloaded or if there was a checksum error. We collect data on the size and content of the

replication package. 2. We conduct an automatic code cleaning, scanning and correcting the code for some of the most common

execution errors, such as hard-coded path variables (see the next section). Statistics on code files, such as

the number of lines, libraries, and comments, are also collected.

 3. The workflow attempts to execute the researchers’ code for an allocated period of one hour per file and five

hours in total. The re-execution test is conducted with and without the code cleaning step, and the result

(success, error, or time-limit exceeded) is recorded.

 4. The re-execution results and other collected data are passed to the backend database for analysis.

Though a total of 2,170 replication packages contained R code and were visible through the Dataverse API,

we successfully retrieved 2109 (97%) of them. Some of these packages had restricted access and caused an’au-

thorization error’ when we attempted to retrieve them. In other cases, files had obscure and erroneous encoding,

which caused errors during the download. Those were excluded from our study.

Code cleaning. Our implementation of code cleaning aims to solve some of the most common re-execution

errors. In particular, it removes absolute file paths, standardizes file encoding, and identifies and imports used

libraries to set up a proper execution environment. The research code is modified to install the used library if it

is not already present in the environment. The code cleaning approach is kept relatively simple to minimize the

chance of ’breaking the code’ or creating errors that were not previously there. Readers can learn more about the

technical implementation of code cleaning in Appendix 3.
Results and Discussion
We define ten research questions to provide a framework for the study. The first group of questions revolves

around coding practices (RQ 1–3), while the other around the automated code re-execution (RQ 4–10).

RQ 1. What are the basic properties of a replication package in terms of its size and content? Our

first research question focuses on the basic dataset properties, such as its size and content. The average size of a

dataset is 92 MB (with a median of 3.2 MB), while the average number of files in a dataset is 17 files (the median

is 8). Even though it may seem that there is a large variety between datasets, by looking at the distributions, we

observe that most of the datasets amount to less than 10 MB (Fig. 3a) and contain less than 15 files (Fig. 3b).

Analyzing the content of replication packages, we find that about 40% of them (669 out of 2,091) contain

code in other programming languages (i.e., not R). Out of 2091 datasets, 620 contained Stata code (.do files), 46

1

EC2

2

3

4

DOI

Fig. 2 Implementation on the AWS Batch.

2

Scientific Data | (2022) 9:60 | https://doi.org/10.1038/s41597-022-01143-6

www.nature.com/scientificdata

www.nature.com/scientificdata/

the common errors are in executing this code and whether they can be solved with simple changes in the code.

We explore if the code re-execution rates vary between different disciplines and other available features, and

analyze the practices behind the best-performing ones. Finally, we explore code re-execution as a required but

not sufficient condition for reproducibility. Based on the study’s findings, we conclude with recommendations

for disseminating research code for researchers, journals, and repositories.BackgroundOur study uses code deposited and shared at the Harvard Dataverse repository. The Dataverse project (http://

dataverse.org) is an open-source data repository platform for sharing, archiving, and citing research data. It is

developed and maintained by the Harvard’s Institute for Quantitative Social Sciences (IQSS) and a community

of open source contributors. Currently, more than 60 institutions worldwide run Dataverse instances as their

data repository, each hosting data generated by one or more institutions.
Dataverse repositories allow researchers to deposit and share all research objects, including data, code, docu-

mentation, or any combination of these files. A bundle of these files associated with a published scientific result

is called a replication package (or “replication data” or dataset in Dataverse repositories). Researchers’ code from

replication packages usually operates on data to obtain the published result. For the Harvard Dataverse repos-

itory, replication packages are typically prepared and deposited by researchers themselves in an unmediated

fashion (self-curated).The most popular programming languages among the Harvard Dataverse repository users are Stata and R, as

shown from the frequency of deposited code files in Fig. 1. The two languages are often used in quantitative social

science research. Their observed popularity can be attributed to Harvard Dataverse repository initially specializing

in sharing social science research data. In the last five years, it has become a general-purpose, inter-disciplinary

data repository. Stata is proprietary statistical software used in economics, sociology, political science, and health

sciences. R is free and open-source software frequently used among statisticians and data analysts in the social

sciences. Due to its popularity among academics and its open-source license, R is an ideal candidate for our study.

It is currently ranked as the 13th most popular language in the TIOBE index (https://www.tiobe.com/tiobe-index).

In the past, it was ranked as the most popular language7 and has been rated among the top in the Kaggle Machine

Learning & Data Science Survey in the previous few years8. R originated as an open-source and free version of S,

a statistical command language that made programming accessible without the necessity of formal training. R is

highly adaptable due to its extensible package system, which led to a surge of community-driven developments.

Although the broad community development created potential for unsustainable code, methods for package stand-

ardization and quality control have been improving with the creation of RStudio, an integrated development envi-

ronment (IDE) for R, and online communities like R-Hub and ROpenSci.Implementation and MethodsThe R programming language is the main focus of our study due to its open-source license and popularity in

scientific computing. We retrieve the content of 2109 publicly-available replication packages published from

2010 to July 2020 that contain 9078 R code files from the Harvard Dataverse repository. The Harvard Dataverse

archives more than 40,000 datasets containing over 500,000 files at the time of writing. The rest of the datasets,

over 65,000, are harvested from other federated repositories. For our analysis, we use only the deposited datasets

(not harvested) due to the metadata differences across different repositories. Below, we elaborate on the study’s

implementation, workflow, and data collection.We use AWS Batch (https://aws.amazon.com/batch) to parallelize the effort of retrieving and re-executing

research code in each replication package. AWS Batch automatically provisions resources and optimizes the

workload distribution while executing jobs without interactions with the end-user. All replication packages in

the Harvard Dataverse repository are uniquely identified with a DOI (digital object identifier), and we start the

analysis by retrieving the list of DOIs that contain R code (Fig. 2). 1. The DOI list is used to define the AWS jobs, which are then sent to the batch queue, waiting until resources

become available for their execution. 2. When a job leaves the queue, it instantiates a pre-installed Docker image that contains the necessary soft-

ware pipeline to retrieve a replication package and execute its R code.
 3. Each job re-executes code from a single replication package using an Amazon EC2 instance with 16 vCPUs

and 1024 GB of memory.

Fig. 1 Most popular code file types on Harvard Dataverse (Oct, 2020). Of the top two, R is open source and free.

1Scientific Data | (2022) 9:60 | https://doi.org/10.1038/s41597-022-01143-6

www.nature.com/scientificdata

a large-scale study on research
code quality and execution
ana trisovic 1 ✉, Matthew K. Lau 2, thomas Pasquier 3 & Mercè Crosas1

this article presents a study on the quality and execution of research code from publicly-available
replication datasets at the Harvard Dataverse repository. Research code is typically created by a
group of scientists and published together with academic papers to facilitate research transparency
and reproducibility. For this study, we define ten questions to address aspects impacting research
reproducibility and reuse. First, we retrieve and analyze more than 2000 replication datasets with
over 9000 unique R files published from 2010 to 2020. Second, we execute the code in a clean runtime
environment to assess its ease of reuse. Common coding errors were identified, and some of them
were solved with automatic code cleaning to aid code execution. We find that 74% of R files failed
to complete without error in the initial execution, while 56% failed when code cleaning was applied,
showing that many errors can be prevented with good coding practices. We also analyze the replication
datasets from journals’ collections and discuss the impact of the journal policy strictness on the
code re-execution rate. Finally, based on our results, we propose a set of recommendations for code
dissemination aimed at researchers, journals, and repositories.

Introduction
Researchers increasingly publish their data and code to enable scientific transparency, reproducibility, reuse,
or compliance with funding bodies, journals, and academic institutions1. Reusing data and code should propel
new research and save researchers’ time, but in practice, it is often easier to write new code than reuse old. Even
attempting to reproduce previously published results using the same input data, computational steps, methods,
and code has shown to be troublesome. Studies have reported a lack of research reproducibility2,3 often caused
by inadequate documentation, errors in the code, or missing files.

Paradigms such as literate programming could help in making the shared research code more understand-
able, reusable, and reproducible. In literate programming, traditional source code is interspersed with explana-
tions of its logic in a natural language4. The paradigm was encouraged for scientific computing and data science
to facilitate reproducibility and transparency. However, in practice, researchers write code intending to obtain
scientific insights, and there is often no incentive to structure and annotate it for reuse. As a result, the research
code quickly becomes unusable or unintelligible after meeting its initial purpose5.

Though much of the code’s intrinsic design will determine its longevity, its dissemination platform could
also have a compelling influence6. In particular, data and code repositories are some of the primary venues for
sharing research materials. They aim to support researchers by creating general dissemination guidelines and
descriptive metadata, but they cannot always prevent irreproducibility and code-rot due to the vast diversity of
programming languages and complex computing processes. This is only aggravated as researchers generate and
share new results and code at a rate higher than ever before.

This paper presents a study that provides an insight into the programming literacy and reproducibility
aspects of shared research code. The first premise of the study is to examine the properties of the shared datasets
and research code. Information such as their size, content, presence of comments in the code, and documenta-
tion in the directory help us understand the current state of research code. By comparing the observed coding
practices to the established best practices, we identify the existing weak points and areas of improvement for
researchers writing code. Our content analysis gives us an insight into the storage needs and requirements for
supporting files, such as documentation, images, or maps. The second premise of the study is to examine what
happens when an external researcher retrieves and re-executes shared research code. In particular, we ask what

1institute for Quantitative Social Science, Harvard University, cambridge, MA, USA. 2cAS Key Laboratory of
forest ecology and Management, institute of Applied ecology, chinese Academy of Sciences, Shenyang, china.
3Department of computer Science, University of British columbia, Vancouver, Bc, canada. ✉e-mail: anatrisovic@g.
harvard.edu

AnAlySiS

OPEN

[1] Reproducibility
74 % do not run

R Melts Brains

DLS ’19, October 20, 2019, Athens, Greece

We leave the reader with a rather amusing brain twister.

R has context-sensitive lookup rules for variables in call po-

sition. Variables that are not bound to functions are skipped:

f <- function(c) {c(1, 2) + c}

f(3)

The lookup of c in c(1,2) skips the argument c, since it is

not a function. Instead, primitive c() is called to construct

a vector. The second read of c is not in call position, thus it

returns argument c, 3 in this case. The result is the vector

[4,5] as addition is vectorized. Now, consider the following

variation:
bad <- function() rm(list="c", envir=sys.frame(-1))

f(bad())

This time evaluation ends with an error as we try to add

a vector and a function. Evaluation of c(1,2) succeeds and

returns a vector. But, during the lookup of c for that call,

R first encounters the argument c. In order to check if c is

bound to a closure, it evaluates the promise, causing bad()

to delete the argument from the environment. On the second

use of c, the argument has been removed and a function

object, c, is returned.
2.3 Related WorkR has one reference implementation, GNU R, and several

alternative implementations. GNU R includes a bytecode

compiler with a small number of carefully tuned optimiza-

tions [17]. Unlike ours, GNU R’s bytecode implicitly assumes

the presence of an environment for every function applica-

tion. Variable lookup, in the worst case, requires inspecting

all bindings of each environment in scope. To mitigate the

lookup cost, GNU R caches bindings when safe. FastR’s first

version featured a type-specializing tree interpreter that out-

performed GNU R [6]. It split environments into a statically

known part (represented by arrays with constant-time ac-

cesses) and extensions that could grow and shrink at runtime.

Environments were marked dirty whenever a reflective oper-

ation modified them. The second version of FastR uses Truf-

fle for specialization and Graal for code generation [14, 20].

Graal’s intermediate representation is general purpose [3].

FastR speculatively specializes the code based on profile-

driven global assumptions. For instance, functions exhibiting

a runtime stable binding structure are compiled under that

assumption. The compiler elides environments and stores

variables on the stack. Code is added to detect violation of

assumptions and trigger deoptimization. Type specialization

was also used in the ORBIT project, an attempt at extending

GNU R with a type specializing bytecode interpreter [19].

On the other hand, the Riposte compiler tried to speed up

R by recording execution traces for vector operations [16].

Riposte performed liveness analysis on the recorded traces

to avoid unnecessary vector creations and parallelize code.

None of these alternatives provides any special treatment

for environment bindings. Our work departs from all these

efforts in that we provide explicit support for environments

and promises in the compiler IR. This allows us to combine

static reasoning (when feasible) with speculative optimiza-

tions (when needed).Other languages have some of the same features R has

but, usually, are more amenable to compilation. Julia resem-

bles R in that it is dynamically typed, reflective, and targets

scientific computing. But, as shown by Bezanson et al. [1],

it exhibits much better performance. This is due to a com-

bination of careful language design and an implementation

strategy that focuses on type specialization, inlining, and un-

boxing. Julia does not have lazy evaluation, it restricts eval

to execute at the top level, and limits reflection. Another ex-

ample is JavaScript. While it is also dynamic, the only way to

add variables to a scope is using eval, which can only do so

locally. Serrano [13] performs static reasoning on JavaScript

by relying on type specialization and occurrence typing [18],

as well as rapid atomic type analysis [8]. Whenever types

cannot be statically determined, the compiler assumes the

most likely structures ahead of time and relies on specula-

tive guards for soundness. Smalltalk also features first-class

contexts, although adding bindings at runtime is not sup-

ported. The Cog VM [10] maps context objects to the native

stack and materializes contexts on demand when they are

reflectively accessed.
3 An Intermediate Representation for R

We provide an example-driven explanation of PIR before the

formal introduction. For readers who prefer a bottom-up ex-

planation, we suggest starting with section 4. We distinguish

between source-level R variables, which we call variables,

and PIR local variables, called registers. Variables are stored

in environments while the implementation of registers is left

up to the compiler, and reflective access is not provided.
3.1 Scope Resolution to Lower Variables

We start with an example to illustrate how R variables are

modeled, and if possible lowered to registers. We use the

following simple function definition:function() { answer <- 42; answer }
The function defines a local variable and returns its value. It

translates to the following PIR instructions:e0 = MkEnv (: G)%1 = LdConst [1] 42StVar (answer, %1, e0)
%3 = LdVar (answer, e0)
%4 = Force (%3) e0Return (%4)

First, MkEnv creates an empty environment nested in G, the

global environment. As all values are vectorized, 42 is loaded

as a vector of length 1. StVar updates environment e0 with57

DLS ’19, October 20, 2019, Athens, Greece

Flückiger, Chari, Ječmen, Yee, Hain, Vitek

R programs. Unsurprisingly, existing implementations resort
to dynamic techniques to optimize code [6, 14, 16, 19].The contribution of this paper is the design of PIR, an in-
termediate representation (IR) for R programs with explicit
support for environments and lazy evaluation. PIR is a static
single assignment (SSA) [12] code format inspired by our
experience with the bytecode of the GNU R reference im-
plementation, earlier work on FastR [6], the sourir IR we
developed to model speculative optimizations [4], and an
earlier attempt to optimize R using LLVM. In our experience,
some of the most impactful optimizations are high-level ones
that require understanding how values are used across func-
tion boundaries. We found that the GNU R bytecode [17]
was too high level; it left too many of the operations implicit.
In contrast, we found LLVM’s IR [7] too low level for easily
expressing some of our target optimizations.PIR is part of Ř, a new just-in-time compiler for the R
language. To motivate its need, we start with background
on R and on related efforts in section 2. We give an informal
overview of PIR in section 3. Then, section 4 details PIR and
presents two transformation passes. The first, scope resolu-
tion, statically resolves bindings, and the second, promise
inlining, removes lazy argument evaluation. Finally, section 5
illustrates how PIR helps Ř1 reduce overheads. Our compiler
is not complete and we are not yet able to run at competitive
speed, so the results should be considered preliminary. Ř is
available at https://github.com/reactorlabs/rir.
2 Background
This section describes key properties of environments and
promises, and discusses work that deals with similar issues.2.1 Environments in RInspired by Scheme and departing from its predecessor S, R
adopted a lexical scoping discipline [5]. Variables are looked
up in a list of environments. Consider this snippet:g <- function(a) {

f <- function() x+yif (a) x <- 2
f()

}
y <- 1

The evaluation of x+y requires finding x in the enclosing
environment of the closure f, and y at the top level. It is
worth pointing out that, while R is lexically scoped, the scope
of a free variable cannot be resolved statically. For instance,
x will only be in scope in g if the argument a evaluates to
true.
R uses a single namespace for functions and variables. En-

vironments are used to hold symbols like +. While primarily1Pronounced like a trilled “r”, the sound one makes upon realizing that
arguments can modify the environment of the function they are given to.

used for variables, environments can also be created explic-
itly, e.g., to be used as hashmaps. Libraries are loaded by
the attach() function that adds an environment to the list
of environments. A number of operations allow interaction
with environments: environment() accesses the current envi-
ronment; ls(...) lists bound variables; assign(...) adds or
modifies a binding; and rm(...) removes variables from an
environment. R has functions to walk the environment chain:
parent.frame() returns the environment associated with the
caller’s call frame and sys.frame(...) provides access to the
environment of any frame on the call stack. In R, frames
represent function invocations and they have references to
environments. Consider this code:
f <- function() get("x", envir=parent.frame())
g <- function() {x <- "secret"; f()}Function f uses reflection to indirectly access g’s environ-

ment. This illustrates that any callee may access (and change)
the caller environment.
2.2 Laziness in R
Since its inception, R has adopted a call-by-need evaluation
strategy (also called lazy evaluation). Each expression passed
as argument to a function is wrapped in a promise, a thunk
that packages the expression, its environment, and a slot to
memoize the result of evaluating the expression. A promise is
only evaluated when its value is needed. Consider a function
that branches on its second argument:f <- function(a, b) if(b) a
A call f(x<-TRUE,x) creates two promises, one for the assign-
ment x<-TRUE, and one to read x. One could expect this call
to return TRUE, but this is not so. The condition is evaluated
before variable x is defined, causing an error to be reported.
Combined with promises, the sys.frame function allows non-
local access to environments during promise evaluation:f <- function() sys.frame(-1)g <- function(x) xg(f())

Here g receives promise f() as argument. When the promise
is forced, there will be three frames on the stack: frame 0 is
the global scope, frame 1 is g’s, and frame 2 is f’s frame.

0: g(f())
1: x

2: sys.frame(-1)

During promise evaluation, parent.frame refers to the frame
where the promise was created (frame 0 in this example,
as promise f() occurs at the top level). But, sys.frame(-1)
accesses a frame by index, ignoring lexical nesting, thus
extracting the environment of the forcing context, i.e., the
local environment of g at frame 1.

56

R Melts Brains
An IR for First-Class Environments and Lazy Effectful Arguments

Olivier Flückiger
Northeastern University

Guido Chari
Czech Technical University

Jan Ječmen
Czech Technical University

Ming-Ho Yee
Northeastern University

Jakob Hain
Northeastern University

Jan Vitek
Northeastern / Czech Technical U.

Abstract
The R programming language combines a number of fea-
tures considered hard to analyze and implement efficiently:
dynamic typing, reflection, lazy evaluation, vectorized prim-
itive types, first-class closures, and extensive use of native
code. Additionally, variable scopes are reified at runtime as
first-class environments. The combination of these features
renders most static program analysis techniques impractical,
and thus, compiler optimizations based on them ineffective.
We present our work on PIR, an intermediate representa-
tion with explicit support for first-class environments and
effectful lazy evaluation. We describe two dataflow analyses
on PIR: the first enables reasoning about variables and their
environments, and the second infers where arguments are
evaluated. Leveraging their results, we show how to elide
environment creation and inline functions.

CCS Concepts • Software and its engineering→Com-
pilers.

Keywords IR, first-class environment, lazy evaluation, R
ACM Reference Format:
Olivier Flückiger, Guido Chari, Jan Ječmen, Ming-Ho Yee, Jakob
Hain, and Jan Vitek. 2019. R Melts Brains: An IR for First-Class En-
vironments and Lazy Effectful Arguments. In Proceedings of the 15th
ACM SIGPLAN International Symposium on Dynamic Languages
(DLS ’19), October 20, 2019, Athens, Greece. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3359619.3359744

1 Introduction
The R language [11] presents interesting challenges for im-
plementers. R is a dynamic imperative language with vector-
ized operations, copy-on-write of shared data, a call-by-need
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
DLS ’19, October 20, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6996-1/19/10. . . $15.00
https://doi.org/10.1145/3359619.3359744

evaluation strategy, context-sensitive lookup rules, multiple
dispatch, and first-class closures. A rich reflective interface
and a permissive native interface allow programs to inspect
and modify most of R’s runtime structures. This paper fo-
cuses on the interplay of first-class, mutable environments
and lazy evaluation. In particular, we focus on their impact
on compiler optimizations.

One might see the presence of eval as the biggest obstacle
for static reasoning. With eval, text can be turned to code
and perform arbitrary effects. However, the expressive power
of eval can be constrained by careful language design. Julia,
for instance, has a reflective interface that does not ham-
per efficient compilation [1]. Even an unconstrained eval

is bound by what the language allows; for example, most
programming languages do not allow code to delete a vari-
able. Not so in R. Consider one of the most straightforward
expressions in any language, variable lookup:

f <- function(x) x

In most languages, it is compiled to a memory or register
access. From the point of view of a static analyzer, this ex-
pression usually leaves the program state intact. Not so in R.
Consider a function doubling its argument:

g <- function(x) x+x

In most languages, a compiler can assume it is equivalent
to 2*x and generate whichever code is most efficient. At the
very least, one could expect that both lookups of x resolve
to the same variable. Not so in R.

Difficulties come from two directions at once. R variables
are bound in environments, which are first-class values that
can be modified. In addition, arguments are evaluated lazily;
whenever an argument is accessed for the first time, it may
trigger a side-effecting computation – which could modify
any environment. Consequently, to optimize the body of a
function, a compiler must reason about effects of the func-
tions that it calls, as well as the effects from evaluating its
arguments. In the above example, `+` could walk up the call
stack and delete the binding for variable x. One could also
call gwith an expression that deletes x and causes the second
lookup of x to fail. While unlikely, a compiler must be ready
for it. Considering these examples in combination with eval,
it is impossible to statically resolve the binding structure of

55

[4] Dynamic Features
Reflectiveness, . . .

2. BACKGROUND AND KEY ISSUES

Next, we present background related to how R works. In

addition, to motivate the optimizations discussed in Sec-

tion 5, we also discuss the key causes for space and time

inefficiencies in the R interpreter.2.1 InterpretationR is an interpreted language. Program statements are in-

terpreted by an eval function that looks up values of sym-

bols and implementation of operators while evaluating the

expression in the given environment. Interpretation of every

operator results in a call to a function that implements the

operator. For example, an expression of the form a+b will re-

sult in a lookup for the + operator and the internal function

do_arith will be called to perform the operation. Expres-

sions such as a[x] result in calling the do_subset function or

the do_subassign function. Repeated lookups and function

calls can be very expensive, particularly when they happen

repeatedly, e.g, in loops. This interpretive nature of R re-

sults in the creation of a large number of temporary variables

that can have a very high execution overhead. An example

illustrating this issue is shown in Appendix A.

Compiling R code to C/C++ is a known technique to

improve efficiency [25, 26, 27, 43, 44]. Generating C/C++

code and executing compiled code leads to significant perfor-

mance improvements to R programs. One important chal-

lenge in automatic translation of R programs to C/C++ is

to statically determine variable types in the program/target

subroutine so that proper declarations, object iterators, and

access methods can be generated. Translation to C/C++

is not possible without type information. Simple type infer-

encing can be helpful, as illustrated in Appendix A.

2.2 Copy-on-write Semantics
In an assignment of the form y <- x, both x and y point

to the same memory location, unless one of them is written

to, in which case a copy is made. However, a copy may

not be needed if the other variable is not live beyond that

point; i.e., its value is no longer needed. Restricting copies

can save memory space especially when dealing with large

objects, such as long vectors.
Listing 2: Copy-On-Write

�
�

1 n <- 1e82 x <- rep(1,n)3 y <- x4 x[2] <- 35 y[2] <- 3�
�

The Copy-On-Write example, Listing 2, illustrates how

live variable analysis can reduce memory overheads. Due

to the copy-on-write semantics of R, the assignment on line

3 does not create a new allocation, but the assignments on

lines 4 and 5 do. The R interpreter internally maintains a

named field for every S-expression. The value of this field

can be 0 (not shared), 1 (internal use), or 2 (may be shared).

The assignment on line 3 sets the named field to 2 for the

object pointed to, in this case, the long vector. The assign-

ments on lines 4 and 5 notice that there may be a shared

value, and creates copies of the vector with the named field

set to 0 in the copies. The copy on line 5 can always be

avoided, but R does not track the set of variables that point

to the same object. Hence, it cannot determine that after

line 4, x and y are no longer aliased. Moreover, if x and

y no longer live beyond line 4, then the copy on line 4 can

be avoided. In fact, the assignment on line 4 need not be

performed in this example.
Instead of copy-on-write, a more efficient semantic would

be to have copy-on-write-and-live-sharers. That is, a copy is

needed during modification of an aliased object only if some

of the other aliases may live beyond that point.

2.3 Attribute Evaluations
R maintains attributes (meta-data) for each object. Some

important attributes are “class” (class of the object) used by

a dispatch function, “dim” (dimension) used for arrays and

matrices, “dimnames” (names of dimensions), “rownames”,

“colnames”, “names”, and “tsp” used for time-series objects.
Listing 3: Kmeans [42]

�
�

1 A <-read.table(file="airline150M.csv",

sep=",", header=T, nrows

=149545445 ,...)
2 gc(T)3 system.time(result <- kmeans(na.omit(A)

,2,iter.max=1000, algorithm="Lloyd"))

4 gc(T)�
�

Some computation is performed by the R interpreter to

maintain attributes during interpretation of an R program.

Depending on the size of the object and the attribute, this

step can be quite costly. An illustrative example of this

overhead for the Kmeans program, Listing 3, is shown in

Appendix B where we discuss how implicit conversion from

a dataframe object to a matrix can be inefficient. In Sec-

tion 6 we present a reduction transformation to avoid this

overhead.

Listing 4: Unique Genotypes Test [39,40]

�
�

1 NG.test <- function(X,N,n,reps){

2
L <- length(X)

3
G <- numeric ()

4
for(i in 1:reps){

5
genos <- matrix(NA,N,L)

6
for(j in 1:L){

7
genos[,j] <- sample(c(0,1),size=N,

replace=TRUE ,prob=c(1-X[j],X[j])

)8
}9
geno.c <- numeric ()

10
for(j in 1:N){

11
geno.c[j] <- paste(genos[j,],sep=

"",collapse="")

12
}13
G[i] <- length(unique(geno.c))

14
}15

G
16 }
17
18 X <- rbeta (29 ,.2 ,.2)

19 N <- 2920 n <- 1521 reps <- 100000
22 system.time(xx <- NG.test(X=X,N=N,n=n,

reps=reps))
�

�3

Table 1: Static analyses techniques, with the associated Optimizations in square brackets, for our workloads. For example, the

Simple Arithmetic program is improved by the Space Reuse optimization which is enabled by live variable and alias analyses.

Analysis [Optimizations]

Workload
Status

Type Inference [Translation to C++ code and compilation]

Binary Search
Automated2D Random Walk AutomatedEuclidean Distance AutomatedOddCount

AutomatedExponential Smoothing AutomatedDiscrete Value Time Series, ver. A AutomatedDiscrete Value Time Series, ver. B Automated

Live Variable and Alias Analyses [Space Reuse]
Simple Arithmetic Automated

Reaching Definitions Analysis [Vectorization + Code Motion]
Simple Vectorization Automated

Type Inference [Strength Reduction (Float → Int)]

Unique Genotypes Test
User-Input

Type Inference [Strength Reduction (Float → String)]

User-Input

Type Inference [Strength Reduction (Float → String) + Code Motion]

User-Input

Type Inference [Strength Reduction (DataFrame → Matrix)]
Kmeans

User-Input

Loop Analysis [Loop Tiling]
Matrix Multiplication User-Input

R Code +
Inputs

Evaluation

Static Analyzer

Program
Properties

Optimizer

TR
A

D
IT

IO
N

A
L

ROSA

Figure 1: System Architecture

To illustrate, with our Space Reuse optimization, the R
interpreter can process the Simple Arithmetic program dis-
cussed above with 18 billion elements.A crucial aspect of our design is that large parts of it
can work without requiring modifications to the existing R
programs. This aspect is important as a big driver behind
the popularity of R is the large code base of user code and
CRAN packages that are already deployed. Our approach
is to use a compiler-based approach as outlined in Figure 1.

The left side of Figure 1 shows a high-level schematic of
the traditional workflow for executing R programs. The
right side of this figure shows the new workflow with ROSA.
In the traditional workflow, the R interpreter directly eval-
uates the given R program and its inputs. During evalu-
ation it executes any precompiled portions directly on the
host machine. In ROSA, the program along with its inputs
is first analyzed by the Static Analyzer to determine vari-
ous properties at each point in the program. These proper-
ties can then be inspected by the ROSA Optimizer for vari-
ous transformations, e.g., vectorization, code motion, C++
code translation, etc. This optimized code is then evaluated.
The inferred program properties are also used during evalu-
ation by the R interpreter to avoid making redundant object
copies and perform in-place computations, if possible.

Our system automates the optimizations shown in Table 1
that are marked with the status tag ‘Automated’; i.e. these
techniques work without requiring any changes to existing R
programs. Due to inherent characteristics of the R language
(discussed further in Section 6.2), the remaining optimiza-
tions require user feedback. However, we note that even
unmodified program can benefit dramatically with ROSA,
as demonstrated by the results presented in Section 6.

The key contributions of this paper are as follows.1. We propose the ROSA framework that integrates compiler-
based optimization techniques with R’s evaluation frame-
work. We demonstrate using an empirical evaluation
that ROSA improves performance, and has a smaller
memory footprint compared with both Microsoft R
Open and CRAN R.

2. We propose a type inferencing system that generates
crucial information necessary for automated transla-
tion of R programs to efficient C++ code. While
speeding up of R programs using C++ code is known,
type inferencing for automated translation into C++
code has not been hitherto explored. Type inferencing
information is also useful for vectorization and strength
reduction transformations.

3. We show how enhancements to the R interpreter, that
utilize live variable analysis and alias analysis infor-
mation, can overcome the space inefficiencies of the
existing copy-on-write policy of R. We also highlight
the importance of strength reduction transformations
in improving performance of R programs by reducing
or eliminating costly type-conversion operations.The remainder of this paper is organized as follows. Sec-

tion 2 presents the required preliminaries. Section 3 presents
a more detailed architecture of ROSA. Section 4 describes
relevant static analysis techniques. Section 5 describes the
optimizations that use the inferred program properties. Sec-
tion 6 presents empirical results. Section 7 covers related
work and Section 8 contains our concluding remarks. The
Appendix includes code for the R programs that we use.

2

ROSA: R Optimizations with Static Analysis

Rathijit Sen
∗ †

Jianqiao Zhu
‡

Jignesh M. Patel
‡

Somesh Jha
‡

†
Gray Systems Lab

‡
Department of Computer Sciences

Microsoft Corporation University of Wisconsin-Madison
rathijit.sen@microsoft.com {jianqiao,jignesh,jha}@cs.wisc.edu

ABSTRACT
R is a popular language and programming environment for
data scientists. It is increasingly co-packaged with both re-
lational and Hadoop-based data platforms and can often be
the most dominant computational component in data ana-
lytics pipelines. Recent work has highlighted inefficiencies
in executing R programs, both in terms of execution time
and memory requirements, which in practice limit the size of
data that can be analyzed by R. This paper presents ROSA,
a static analysis framework to improve the performance and
space efficiency of R programs. ROSA analyzes input pro-
grams to determine program properties such as reaching def-
initions, live variables, aliased variables, and types of vari-
ables. These inferred properties enable program transfor-
mations such as C++ code translation, strength reduction,
vectorization, code motion, in addition to interpretive opti-
mizations such as avoiding redundant object copies and per-
forming in-place evaluations. An empirical evaluation shows
substantial reductions by ROSA in execution time and mem-
ory consumption over both CRAN R and Microsoft R Open.

1. INTRODUCTION
R is a popular programming language for data analy-

sis [30,37,41,47]. It is the most popular data mining tool [16],
and is the third-most used data analysis language after SQL
and Excel [32]. R is also nearly always co-packaged/embedded
with Hadoop and relational data processing platforms (e.g., [4,
9, 10, 15, 17, 18, 22]), making it a crucial part of contempo-
rary data analytics workflows. Given the close integration
of R and databases, speeding up R has been a recurring
topic in the database research community [42, 52, 53], and
this research follows that line of thinking.

R has a dynamic, lazy, functional, object-oriented lan-
guage semantics [37], and is interpreted [20]. Although highly
expressive, interpretive execution of R programs has space
and runtime inefficiencies [34,42] that are overwhelming when

∗Work done while at UW-Madison

analyzing large datasets [42], limiting the size of the datasets
that can be analyzed with R.

For example, consider the Simple Arithmetic program in
Listing 1 that computes the distances from a given point
to a list of points. This program uses two lists (x and y)
of 1 Billion elements (n <- 1e9) each. Increasing the list
sizes to 9 Billion elements causes the R interpreter to abort
evaluation on our system with 256 GB of memory, as the
program runs out of memory. This behavior is surprising
since the two lists have a total of 18 Billion (8 byte) double-
precision elements, thus requiring less than 140 GB of main
memory. However, when we run this program on a machine
with 256 GB of main memory, the program crashes as it runs
out of memory space. There are significant overheads in the
R interpreter, and these issues surface prominently when
R code is packaged with data platforms that manage large
datasets. Thus, improving the behavior and performance of
R programs is crucial for contemporary data platforms.

Listing 1: Simple Arithmetic in R (program from [42,52])� �
1 n <- 1e9

2 xs <- 0.5

3 ys <- 0.5

4 x <- runif(n)

5 y <- runif(n)

6 d <- sqrt((x-xs)^2+(y-ys)^2)� �
The focus of this paper is on exploring if the limitations of

R discussed above can be mitigated by using compiler tech-
niques (such as [35, 44, 49]). To the best of our knowledge
there hasn’t been any previous study that catalogs the list
of potentially applicable compiler techniques that are appli-
cable in this setting, and systematically determines which of
these can be made to work synergistically with each other
and with the idiosyncrasies that come with the R language.
A key contribution of our paper is addressing this gap. Ta-
ble 1 shows a list of static analyses and corresponding opti-
mizations that we have developed in this paper to address
this research question.

Implementing these techniques can be challenging. One
can certainly build each technique individually as a stan-
dalone technique/package, but a better way is to incorporate
these techniques as first-class analyses into a compiler. This
integrated compiler-based approach is what we take in this
paper, creating an R-optimization framework called ROSA.
This integrated approach enhances ease-of-use for the end
user, and also enables reuse of analysis results across op-
timizations; e.g., type inferencing results can be used for
vectorization, strength reduction, and code translation.

1

ar
X

iv
:1

70
4.

02
99

6v
2

 [
cs

.P
L

]
 3

 J
ul

 2
01

7

[7] Little Tool Support
No sophisticated analysis

[7] Sen et al., ROSA: R Optimizations with Static Analysis (2017, arXiv)
[4] Flückiger et al., “R melts brains: an IR for first-class environments and lazy effectful arguments” (2019, ACM DLS)
[1] Trisovic et al., “A Large-Scale Study on Research Code Quality and Execution” (2022, Nature Publishing Group)

F. Sihler (Ulm University) flowR — Motivation 3.2

The Goal of flowR
#R version 4.0.5 (2021-03-31)
library("groundhog")
p ← c("tidyverse", "broom", "svglite", "gdtools", "GenSA", "gghighlight")
groundhog.library(p, "2021-02-15")
rm(p)
latvina for cultivar names
sessionInfo(); Sys.setlocale("LC_ALL", "Latvian") # lv valoda
set the data directory and load workspace
setwd("G:/Shared drives/Fenologija/Raksti/abeles/Zenodo/")
load("Apple_Pure_phenology_R_workspace_image.RData")

scirpt to recreate components included in of "Apple_Pure_phenology_R_workspace_image.RData"
{

phenology data subset having at least 14 observations owerlaping wiht meteorology data set
{

dM ← d %>%
filter(Year %in% (meteoHe_obsYear))

dM ← dM %>%
group_by(Variety) %>%
summarize(N = n()) %>%
arrange(N) %>%
filter(N >= 14) %>% # 12 skirnes
select(-N) %>%
left_join(dM)

}

FUNCTION definitinos
phenology model deifned as functino, see Kalvans et al, 2015, DDcos model for details
{

parameter set for model testing
pari = c(Tb = 10.1, DD = 200.1) # Tb - base temperature; DD - cumulative degree days for phase onset
lookup table for sin distribution
sadalijums = round((sin(seq(0, 1, 0.01) *2 *pi) + 1)/2, 2)
elementary function, start of heat sum accumulation Januar 1
DDsin_el ← function(pari,

meteoi,
sadalijums) {

pari - model parameters (Tb and DD)
meteoi - meteorology data
sadalijums - lookup table for sin distributino
a ← meteoi %>%
mutate(Tspread = Tmax - Tmin,

DD = map2(Tspread, Tmin, ~(sadalijums * .x) + .y),
DD = map(DD, ~(. -pari["Tb"])),
DD = map_dbl(DD, ~replace(., . < 0, 0) %>% sum()),
DD = DD / length(sadalijums),
DD = cumsum(DD)) %>%

filter(DD >= pari["DD"]) %>%
filter(DoY == min(DoY)) %>%
select(Date, DoY, DD) %>%
rename(Analysis_DoY = DoY)
return(a)

}
elementary function test
DDsin_el(pari = pari,

meteoi = meteoe_obsdata[[1]],
sadalijums = sadalijums)

applyign the elementary functino to full data set
DDsin ← function(pari,

sadalijums,
dd,
meteod) {

dd - phenology data,
meteod - meteorology data to be used
pari - phenology model paramters (Tb, DD)
Tb - bazes temepratura
inner_join(dd, meteod, by = c("Year")) %>%
filter(!is.na(data)) %>%
mutate(Analysis_DoY = purrr :: map(data, ~DDsin_el(pari = pari,

meteoi = .,
sadalijums = sadalijums))) %>%

unnest(cols = c(Analysis_DoY))
}
test the model for furll data set
DDsin(pari = pari,

sadalijums = sadalijums,
dd = d[c(1:10),],
meteod = meteo$e_obs)

calculating the model preformance indicators
(Nstat - number of data points; ME - mean erro; MAE - mean absolute error; RMSE - root mean squared error)
DDsin_stat ← function(pari,

stats,
sadalijums,
dd,
meteod) {

pari - parameter set for phenology model (Tb, DD)
stats - to be returned, charatet vector, any combinatio of Nstat, ME, MAE, RMSE
sadalijums - sin distribution lookutable
dd - phenology data
meteod - meteorology data
analyse ← DDsin(pari = pari,

sadalijums = sadalijums,
dd = dd,
meteod = meteod)

statistics ← analyse %>%
ungroup() %>%
mutate(dif = Full_bloom_yd - Analysis_DoY) %>%
summarize(Nstat = n(),

ME = mean(dif, na.rm = T),
MAE = mean(abs(dif), na.rm = T),
RMSE = sqrt(mean(dif^2, na.rm = T)))

statistics %>%
select(contains(stats)) %>%
unlist()

}
DDsin_stat(pari = pari,

stats = c("ME", "RMSE"),
sadalijums = sadalijums,
dd = d[c(1:20),],
meteod = meteo$e_obs)

}
model optimizatino
{

DDsinOpt ← function(pari, dd, meteod, maxit,
loweri, upperi) {

pari - phenology model initial paramters (Tb, DD)
dd - phenology data
meteod - meteorological data
maxit - maximum number of GenSA iterations, set to 1 for testing
loweri - lower bound of model parameter range (Tb, DD)
upperi - upper bound of model parameter range (Tb, DD)
if pari == NA a random set is generated
if (any(is.na(pari))) {
pari = runif(2) * (upperi - loweri) + loweri
}
test if the phenology and meteorology data oweralap in time
if (any(dd$Year %in% meteod$Year)) {
print(Sys.time())
print("DDsinOpt")
a ← GenSA :: GenSA(par = pari,

fn = DDsin_stat,
lower = loweri,
upper = upperi,
stats = c("RMSE"),
sadalijums = sadalijums,
dd = dd,
meteod = meteod,
control = list(maxit = maxit,

verbose = T,
temperature = 10000,
smooth = T,
simple.function = T))

return(a$par)
} else {
print("meteoorology and phneology data do not owerlap!")
c(Tb = NA, DD = NA)
}

}
test the optimizatino function
DDsinOpt(pari = NA, dd = d[c(200:230),], meteod = meteoH$e_obs, maxit = 1,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 10, DD = 400))
DDsinOpt(pari = c(Tb = 10.1, DD = 200.1), dd = d[c(220:235),], meteod = meteoH$e_obs, maxit = 2,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400))
}

MODEL OPTIMIZATION
model optimization by cultivar and meteorology data source, to compare the model fit between data sources
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← dM %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))
for (n in names(meteoH)) {
print(n)
a ← di %>%

mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,
lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%

t() %>% as.data.frame()),
Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),

stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteoH[[n]]) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)

rez = bind_rows(rez, a)
rm(i, a)
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_5_fix_t0_100_MeteoTest_min14.rds")
}
rm(n,i)

}
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_all.rds")
cehck the results
tail(rez)
meteo_comparison ← rez; rm(rez)

}
model optimization with e-obs data set lumped all varieties
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← d %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))

a ← di %>%
mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%
t() %>% as.data.frame()),

Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),
stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteo$e_obs) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)
rez = bind_rows(rez, a)
rm(i, a)
}

rm(n,i)
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/e_obs_noVariety.rds")
cehck the results
tail(rez)
e_obs_noVariety ← rez; rm(rez)

}
}

ILUSTRATIONS
Figure 1 periodu medians
{

dMed_year ← d %>%
group_by(Year) %>%
summarize(Med = median(Full_bloom_yd))

dMed_periods ←
tibble(Per = c("I", "II", "III"), From = c(1959, 1976, 2002), To = c(1967, 1987, 2019)) %>%
mutate(Med = map2_dbl(From, To, ~filter(d, Year >= .x, Year <= .y) %>%

summarize(Med = median(Full_bloom_yd)) %>% pull())) %>%
gather(Par, Value, -Per, -Med)

print(dMed_periods)
a ← d %>%

ggplot(aes(Year, Full_bloom_yd)) +
geom_jitter(shape = 1, width = 0.2, height = 0) +
geom_line(data = dMed_periods, mapping = aes(Value, Med, group = Per), lwd = 2, alpha = 0.5) +
scale_x_continuous(minor_breaks = c(1957, 1958, 1959:2019, 2020, 2021),

breaks = seq(1960, 2015, 5)) +
ylab("Full flowering, day of the year")

print(a)
rm(dMed_year, dMed_periods, a)

}
Figure 2 meteo salidzinajums
{

a ← meteo_salidzinajums %>%
mutate(Meteo = replace(Meteo, Meteo == "meteo.lv", "Stende meteorological station")) %>%
select(-Ncal, -Nstat, -Tb, -DD) %>%
mutate(Variety = str_replace(Variety, " ", "\n")) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
ggplot(aes(Variety, Value_e, fill = Meteo)) +
geom_boxplot() +
facet_wrap(~Error, scales = "free") +
ylab("Model error, days") +
labs(fill = ’Meteorological data source’) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),

legend.position = "bottom")
print(a)
rm(a)
statistika
meteo_salidzinajums %>%

select(-Ncal, -Nstat, -Tb, -DD) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
group_by(Error, Meteo) %>%
summarize(Med = median(Value_e)) %>%
as.data.frame()

}
Figure 3
Tb un DD e-obsam, visual inspection
{

a ← e_obs_noVariety %>%
ggplot(aes(Tb, DD)) +
geom_point(shape = 1)

a ← ggplotGrob(a)
b ← e_obs_noVariety %>%

ggplot(aes(Tb, RMSE)) +
geom_point(shape = 1)

b ← ggplotGrob(b)
cc ← e_obs_noVariety %>%

ggplot(aes(RMSE, DD)) +
geom_point(shape = 1)

cc ← ggplotGrob(cc)
blank ← ggplot() + theme_void()
blank ← ggplotGrob(blank)

abc ← gridExtra :: arrangeGrob(cbind(rbind(a, b, size = "first"),
rbind(cc, blank, size = "first"),
size = "first"))

grid :: grid.newpage()
grid :: grid.draw(abc)
rm(a, b, cc, abc, blank)

}
a single best paramter (Tb, DD) set
{

e_obs_noVariety_global ←
e_obs_noVariety %>%
rename(Nstat_l = Nstat,ME_l = ME, MAE_l = MAE, RMSE_l = RMSE) %>%
mutate(stats = map2(Tb, DD, ~ DDsin_stat(pari = c(Tb = .x, DD = .y),

stats = c("Nstat", "ME", "MAE", "RMSE"),
sadalijums = sadalijums,
dd = d,
meteod = meteo$e_obs)))

e_obs_noVariety_global %>%
mutate(stats = map(stats, ~array(., c(1, length(.)), dimnames = list(NULL, names(.))) %>% as.data.frame())) %>%
unnest(cols = c(stats)) %>%
arrange(RMSE) %>% as.data.frame()

z ← e_obs_noVariety %>%
filter(Tb >= 2.5, Tb <= 4.0) %>%
arrange(RMSE)

as.data.frame(z)
range(z$DD)

}
rm(z, e_obs_noVariety_global)

Model

Figure
Figure

Model

Figure

#R version 4.0.5 (2021-03-31)
library("groundhog")
p ← c("tidyverse", "broom", "svglite", "gdtools", "GenSA", "gghighlight")
groundhog.library(p, "2021-02-15")
rm(p)
latvina for cultivar names
sessionInfo(); Sys.setlocale("LC_ALL", "Latvian") # lv valoda
set the data directory and load workspace
setwd("G:/Shared drives/Fenologija/Raksti/abeles/Zenodo/")
load("Apple_Pure_phenology_R_workspace_image.RData")

scirpt to recreate components included in of "Apple_Pure_phenology_R_workspace_image.RData"
{

phenology data subset having at least 14 observations owerlaping wiht meteorology data set
{

dM ← d %>%
filter(Year %in% (meteoHe_obsYear))

dM ← dM %>%
group_by(Variety) %>%
summarize(N = n()) %>%
arrange(N) %>%
filter(N >= 14) %>% # 12 skirnes
select(-N) %>%
left_join(dM)

}

FUNCTION definitinos
phenology model deifned as functino, see Kalvans et al, 2015, DDcos model for details
{

parameter set for model testing
pari = c(Tb = 10.1, DD = 200.1) # Tb - base temperature; DD - cumulative degree days for phase onset
lookup table for sin distribution
sadalijums = round((sin(seq(0, 1, 0.01) *2 *pi) + 1)/2, 2)
elementary function, start of heat sum accumulation Januar 1
DDsin_el ← function(pari,

meteoi,
sadalijums) {

pari - model parameters (Tb and DD)
meteoi - meteorology data
sadalijums - lookup table for sin distributino
a ← meteoi %>%
mutate(Tspread = Tmax - Tmin,

DD = map2(Tspread, Tmin, ~(sadalijums * .x) + .y),
DD = map(DD, ~(. -pari["Tb"])),
DD = map_dbl(DD, ~replace(.m, . < 0, 0) %>% sum()),
DD = DD / length(sadalijums),
DD = cumsum(DD)) %>%

filter(DD >= mpari["DD"]) %>%
filter(DoY == min(DoY)) %>%
select(Date, DoY, DD) %>%
rename(Analysis_DoY = DoY)
return(a)

}
elementary function test
DDsin_el(pari = pari,

meteoi = meteoe_obsdata[[1]],
sadalijums = sadalijums)

applyign the elementary functino to full data set
DDsin ← function(pari,

sadalijums,
dd,
meteod) {

dd - phenology data,
meteod - meteorology data to be used
pari - phenology model paramters (Tb, DD)
Tb - bazes temepratura
inner_join(dd, meteod, by = c("Year")) %>%
filter(!is.na(1mdata)) %>%
mutate(Analysis_DoY = purrr::map(data, ~DDsin_el(pari = pari,

meteoi = .,
sadalijums = sadalijums))) %>%

unnest(cols = c(Analysis_DoY))
}
test the model for furll data set
DDsin(pari = pari,

sadalijums = sadalijums,
dd = d[c(1:10),],
meteod = meteo$e_obs)

calculating the model preformance indicators
(Nstat - number of data points; ME - mean erro; MAE - mean absolute error; RMSE - root mean squared error)
DDsin_stat ← function(pari,

stats,
sadalijums,
dd,
meteod) {

pari - parameter set for phenology model (Tb, DD)
stats - to be returned, charatet vector, any combinatio of Nstat, ME, MAE, RMSE
sadalijums - sin distribution lookutable
dd - phenology data
meteod - meteorology data
analyse ← DDsin(pari = pari,

sadalijums = sadalijums,
dd = dd,
meteod = meteod)

statistics ← analyse %>%
ungroup() %>%
mutate(dif = Full_bloom_yd - Analysis_DoY) %>%
summarize(Nstat = n(),

ME = mean(dif, na.rm = T),
MAE = mean(abs(dif), na.rm = T),
RMSE = sqrt(mean(dif^2[0m, na.rm = T)))

statistics %>%
select(contains(stats)) %>%
unlist()

}
DDsin_stat(pari = pari,

stats = c("ME", "RMSE"),
sadalijums = sadalijums,
dd = d[c(1:20),],
meteod = meteo$e_obs)

}
model optimizatino
{

DDsinOpt ← function(pari, dd, meteod, maxit,
loweri, upperi) {

pari - phenology model initial paramters (Tb, DD)
dd - phenology data
meteod - meteorological data
maxit - maximum number of GenSA iterations, set to 1 for testing
loweri - lower bound of model parameter range (Tb, DD)
upperi - upper bound of model parameter range (Tb, DD)
if pari == NA a random set is generated
if (any(is.na(mpari))) {
pari = runif(2) * (upperi - loweri) + loweri
}
test if the phenology and meteorology data oweralap in time
if (any(dd$mYear %in% meteod$Year)) {
print(Sys.time())
print("DDsinOpt")
a ← GenSA::GenSA(par = pari,

fn = DDsin_stat,
lower = loweri,
upper = upperi,
stats = c("RMSE"),
sadalijums = sadalijums,
dd = dd,
meteod = meteod,
control = list(maxit = maxit,

verbose = T,
temperature = 10000,
smooth = T,
simple.function = T))

return(a$par)
} else {
print("meteoorology and phneology data do not owerlap!")
c(Tb = NA, DD = NA)
}

}
test the optimizatino function
DDsinOpt(pari = NA, dd = d[c(200:230),], meteod = meteoH$e_obs, maxit = 1,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 10, DD = 400))
DDsinOpt(pari = c(Tb = 10.1, DD = 200.1), dd = d[c(220:235),], meteod = meteoH$e_obs, maxit = 2,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400))
}

MODEL OPTIMIZATION
model optimization by cultivar and meteorology data source, to compare the model fit between data sources
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← dM %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))
for (n in names(meteoH)) {
print(n)
a ← di %>%

mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,
lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%

t() %>% as.data.frame()),
Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),

stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteoH[[n]]) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)

rez = bind_rows(rez, a)
rm(i, a)
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_5_fix_t0_100_MeteoTest_min14.rds")
}
rm(n,i)

}
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_all.rds")
cehck the results
tail(rez)
meteo_comparison ← rez; rm(rez)

}
model optimization with e-obs data set lumped all varieties
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← d %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., 3Ncal = sum(Cal)) %>% unlist()))

a ← di %>%
mutate(Gensa = map(data, ~DDsinOpt(1mpari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%
t() %>% as.data.frame()),

Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),
stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteo$e_obs) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)
rez = bind_rows(rez, a)
rm(i, a)
}

rm(n,i)
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/e_obs_noVariety.rds")
cehck the results
tail(rez)
e_obs_noVariety ← rez; rm(rez)

}
}

ILUSTRATIONS
Figure 1 periodu medians
{

dMed_year ← d %>%
group_by(Year) %>%
summarize(Med = median(Full_bloom_yd))

dMed_periods ←
tibble(Per = c("I", "II", "III"), From = c(1959, 1976, 2002), To = c(1967, 1987, 2019)) %>%
mutate(Med = map2_dbl(From, To, ~filter(d, Year >= .x, Year <= .y) %>%

summarize(Med = median(Full_bloom_yd)) %>% pull())) %>%
gather(Par, Value, -Per, -Med)

print(dMed_periods)
a ← d %>%

ggplot(aes(Year, Full_bloom_yd)) +
geom_jitter(shape = 1, width = 0.2, height = 0) +
geom_line(data = dMed_periods, mapping = aes(Value, Med, group = Per), lwd = 2, alpha = 0.5) +
scale_x_continuous(minor_breaks = c(1957, 1958, 1959:2019, 2020, 2021),

breaks = seq(1960, 2015, 5)) +
ylab("Full flowering, day of the year")

print(a)
rm(dMed_year, dMed_periods, a)

}
Figure 2 meteo salidzinajums
{

a ← meteo_salidzinajums %>%
mutate(Meteo = replace(Meteo, Meteo == "meteo.lv", "Stende meteorological station")) %>%
select(-Ncal, -Nstat, -Tb, -DD) %>%
mutate(Variety = str_replace(Variety, " ", "\n")) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
ggplot(aes(Variety, Value_e, fill = Meteo)) +
geom_boxplot() +
facet_wrap(~Error, scales = "free") +
ylab("Model error, days") +
labs(fill = ’Meteorological data source’) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),

legend.position = "bottom")
print(a)
rm(a)
statistika
meteo_salidzinajums %>%

select(-Ncal, -Nstat, -Tb, -DD) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
group_by(Error, Meteo) %>%
summarize(Med = median(Value_e)) %>%
as.data.frame()

}
Figure 3
Tb un DD e-obsam, visual inspection
{

a ← e_obs_noVariety %>%
ggplot(aes(3Tb, DD)) +
geom_point(shape = 1)

a ← ggplotGrob(a)
b ← e_obs_noVariety %>%

ggplot(aes(1mTb, RMSE)) +
geom_point(shape = 1)

b ← ggplotGrob(b)
cc ← e_obs_noVariety %>%

ggplot(aes(1mRMSE, DD)) +
geom_point(shape = 1)

cc ← ggplotGrob(cc)
blank ← ggplot() + theme_void()
blank ← ggplotGrob(blank)

abc ← gridExtra::arrangeGrob(cbind(rbind(a, b, size = "first"),
rbind(cc, blank, size = "first"),
size = "first"))

grid::grid.newpage()
grid::grid.draw(abc)
rm(a, b, cc, abc, blank)

}
a single best paramter (Tb, DD) set
{

e_obs_noVariety_global ←
e_obs_noVariety %>%
rename(Nstat_l = Nstat,ME_l = ME, MAE_l = MAE, RMSE_l = RMSE) %>%
mutate(stats = map2(Tb, DD, ~ DDsin_stat(pari = c(Tb = .x, DD = .y),

stats = c("Nstat", "ME", "MAE", "RMSE"),
sadalijums = sadalijums,
dd = d,
meteod = meteo$e_obs)))

e_obs_noVariety_global %>%
mutate(stats = map(stats, ~array(., c(1, length(.)), dimnames = list(NULL, names(.))) %>% as.data.frame())) %>%
unnest(cols = c(stats)) %>%
arrange(RMSE) %>% as.data.frame()

z ← e_obs_noVariety %>%
filter(Tb >= 2.5, Tb <= 4.0) %>%
arrange(RMSE)

as.data.frame(z)
range(z$DD)

}
rm(z, e_obs_noVariety_global)

• Interested in a single figure

• ≈ 80 % to 90 % reduction

[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pūre orchard, Latvia from 1959 to 2019" (2021, Zenodo)

flowR

F. Sihler (Ulm University) flowR — Goal 4

Using flowR. . . in VS Code! github.com/flowr-analysis/flowr
github.com/flowr-analysis/vscode-flowr

Dependency Analysis Program Slicing

F. Sihler (Ulm University) flowR — Using flowR 5.1

https://github.com/flowr-analysis/flowr
https://github.com/flowr-analysis/vscode-flowr

Using flowR. . . in VS Code! github.com/flowr-analysis/flowr
github.com/flowr-analysis/vscode-flowr

Dependency Analysis Program Slicing

Extension
R Code Analyzer (flowR)

Works in vscode.dev

tinyurl.com/flowr-derse25 (requires GH Account)
F. Sihler (Ulm University) flowR — Using flowR 5.2

https://github.com/flowr-analysis/flowr
https://github.com/flowr-analysis/vscode-flowr
https://github.com/flowr-analysis/vscode-flowr
https://vscode.dev/github/flowr-analysis/vscode-dev-flowr-sample

The Architecture flowR

Parse Normalize Dataflow

Slice Reconstruct

load

store

Dep. Analysis
. . .

[8] Sihler, “Constructing a static program slicer for R programs” (2023, Ulm University)
[9] Weiser, “Program Slicing” (1984, IEEE Transactions on Software Engineering)

F. Sihler (Ulm University) flowR — Overview 6

R Code Analysis
github.com/flowr-analysis/flowr

Florian Sihler • florian.sihler@uni-ulm.de

https://github.com/flowr-analysis/flowr
https://github.com/flowr-analysis/flowr
mailto:florian.sihler@uni-ulm.de

Appendix

F. Sihler (Ulm University) flowR — Appendix 8

R Scripts
#R version 4.0.5 (2021-03-31)
library("groundhog")
p ← c("tidyverse", "broom", "svglite", "gdtools", "GenSA", "gghighlight")
groundhog.library(p, "2021-02-15")
rm(p)
latvina for cultivar names
sessionInfo(); Sys.setlocale("LC_ALL", "Latvian") # lv valoda
set the data directory and load workspace
setwd("G:/Shared drives/Fenologija/Raksti/abeles/Zenodo/")
load("Apple_Pure_phenology_R_workspace_image.RData")

scirpt to recreate components included in of "Apple_Pure_phenology_R_workspace_image.RData"
{

phenology data subset having at least 14 observations owerlaping wiht meteorology data set
{

dM ← d %>%
filter(Year %in% (meteoHe_obsYear))

dM ← dM %>%
group_by(Variety) %>%
summarize(N = n()) %>%
arrange(N) %>%
filter(N >= 14) %>% # 12 skirnes
select(-N) %>%
left_join(dM)

}

FUNCTION definitinos
phenology model deifned as functino, see Kalvans et al, 2015, DDcos model for details
{

parameter set for model testing
pari = c(Tb = 10.1, DD = 200.1) # Tb - base temperature; DD - cumulative degree days for phase onset
lookup table for sin distribution
sadalijums = round((sin(seq(0, 1, 0.01) *2 *pi) + 1)/2, 2)
elementary function, start of heat sum accumulation Januar 1
DDsin_el ← function(pari,

meteoi,
sadalijums) {

pari - model parameters (Tb and DD)
meteoi - meteorology data
sadalijums - lookup table for sin distributino
a ← meteoi %>%
mutate(Tspread = Tmax - Tmin,

DD = map2(Tspread, Tmin, ~(sadalijums * .x) + .y),
DD = map(DD, ~(. -pari["Tb"])),
DD = map_dbl(DD, ~replace(., . < 0, 0) %>% sum()),
DD = DD / length(sadalijums),
DD = cumsum(DD)) %>%

filter(DD >= pari["DD"]) %>%
filter(DoY == min(DoY)) %>%
select(Date, DoY, DD) %>%
rename(Analysis_DoY = DoY)
return(a)

}
elementary function test
DDsin_el(pari = pari,

meteoi = meteoe_obsdata[[1]],
sadalijums = sadalijums)

applyign the elementary functino to full data set
DDsin ← function(pari,

sadalijums,
dd,
meteod) {

dd - phenology data,
meteod - meteorology data to be used
pari - phenology model paramters (Tb, DD)
Tb - bazes temepratura
inner_join(dd, meteod, by = c("Year")) %>%
filter(!is.na(data)) %>%
mutate(Analysis_DoY = purrr :: map(data, ~DDsin_el(pari = pari,

meteoi = .,
sadalijums = sadalijums))) %>%

unnest(cols = c(Analysis_DoY))
}
test the model for furll data set
DDsin(pari = pari,

sadalijums = sadalijums,
dd = d[c(1:10),],
meteod = meteo$e_obs)

calculating the model preformance indicators
(Nstat - number of data points; ME - mean erro; MAE - mean absolute error; RMSE - root mean squared error)
DDsin_stat ← function(pari,

stats,
sadalijums,
dd,
meteod) {

pari - parameter set for phenology model (Tb, DD)
stats - to be returned, charatet vector, any combinatio of Nstat, ME, MAE, RMSE
sadalijums - sin distribution lookutable
dd - phenology data
meteod - meteorology data
analyse ← DDsin(pari = pari,

sadalijums = sadalijums,
dd = dd,
meteod = meteod)

statistics ← analyse %>%
ungroup() %>%
mutate(dif = Full_bloom_yd - Analysis_DoY) %>%
summarize(Nstat = n(),

ME = mean(dif, na.rm = T),
MAE = mean(abs(dif), na.rm = T),
RMSE = sqrt(mean(dif^2, na.rm = T)))

statistics %>%
select(contains(stats)) %>%
unlist()

}
DDsin_stat(pari = pari,

stats = c("ME", "RMSE"),
sadalijums = sadalijums,
dd = d[c(1:20),],
meteod = meteo$e_obs)

}
model optimizatino
{

DDsinOpt ← function(pari, dd, meteod, maxit,
loweri, upperi) {

pari - phenology model initial paramters (Tb, DD)
dd - phenology data
meteod - meteorological data
maxit - maximum number of GenSA iterations, set to 1 for testing
loweri - lower bound of model parameter range (Tb, DD)
upperi - upper bound of model parameter range (Tb, DD)
if pari == NA a random set is generated
if (any(is.na(pari))) {
pari = runif(2) * (upperi - loweri) + loweri
}
test if the phenology and meteorology data oweralap in time
if (any(dd$Year %in% meteod$Year)) {
print(Sys.time())
print("DDsinOpt")
a ← GenSA :: GenSA(par = pari,

fn = DDsin_stat,
lower = loweri,
upper = upperi,
stats = c("RMSE"),
sadalijums = sadalijums,
dd = dd,
meteod = meteod,
control = list(maxit = maxit,

verbose = T,
temperature = 10000,
smooth = T,
simple.function = T))

return(a$par)
} else {
print("meteoorology and phneology data do not owerlap!")
c(Tb = NA, DD = NA)
}

}
test the optimizatino function
DDsinOpt(pari = NA, dd = d[c(200:230),], meteod = meteoH$e_obs, maxit = 1,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 10, DD = 400))
DDsinOpt(pari = c(Tb = 10.1, DD = 200.1), dd = d[c(220:235),], meteod = meteoH$e_obs, maxit = 2,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400))
}

MODEL OPTIMIZATION
model optimization by cultivar and meteorology data source, to compare the model fit between data sources
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← dM %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))
for (n in names(meteoH)) {
print(n)
a ← di %>%

mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,
lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%

t() %>% as.data.frame()),
Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),

stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteoH[[n]]) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)

rez = bind_rows(rez, a)
rm(i, a)
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_5_fix_t0_100_MeteoTest_min14.rds")
}
rm(n,i)

}
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_all.rds")
cehck the results
tail(rez)
meteo_comparison ← rez; rm(rez)

}
model optimization with e-obs data set lumped all varieties
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← d %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))

a ← di %>%
mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%
t() %>% as.data.frame()),

Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),
stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteo$e_obs) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)
rez = bind_rows(rez, a)
rm(i, a)
}

rm(n,i)
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/e_obs_noVariety.rds")
cehck the results
tail(rez)
e_obs_noVariety ← rez; rm(rez)

}
}

ILUSTRATIONS
Figure 1 periodu medians
{

dMed_year ← d %>%
group_by(Year) %>%
summarize(Med = median(Full_bloom_yd))

dMed_periods ←
tibble(Per = c("I", "II", "III"), From = c(1959, 1976, 2002), To = c(1967, 1987, 2019)) %>%
mutate(Med = map2_dbl(From, To, ~filter(d, Year >= .x, Year <= .y) %>%

summarize(Med = median(Full_bloom_yd)) %>% pull())) %>%
gather(Par, Value, -Per, -Med)

print(dMed_periods)
a ← d %>%

ggplot(aes(Year, Full_bloom_yd)) +
geom_jitter(shape = 1, width = 0.2, height = 0) +
geom_line(data = dMed_periods, mapping = aes(Value, Med, group = Per), lwd = 2, alpha = 0.5) +
scale_x_continuous(minor_breaks = c(1957, 1958, 1959:2019, 2020, 2021),

breaks = seq(1960, 2015, 5)) +
ylab("Full flowering, day of the year")

print(a)
rm(dMed_year, dMed_periods, a)

}
Figure 2 meteo salidzinajums
{

a ← meteo_salidzinajums %>%
mutate(Meteo = replace(Meteo, Meteo == "meteo.lv", "Stende meteorological station")) %>%
select(-Ncal, -Nstat, -Tb, -DD) %>%
mutate(Variety = str_replace(Variety, " ", "\n")) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
ggplot(aes(Variety, Value_e, fill = Meteo)) +
geom_boxplot() +
facet_wrap(~Error, scales = "free") +
ylab("Model error, days") +
labs(fill = ’Meteorological data source’) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),

legend.position = "bottom")
print(a)
rm(a)
statistika
meteo_salidzinajums %>%

select(-Ncal, -Nstat, -Tb, -DD) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
group_by(Error, Meteo) %>%
summarize(Med = median(Value_e)) %>%
as.data.frame()

}
Figure 3
Tb un DD e-obsam, visual inspection
{

a ← e_obs_noVariety %>%
ggplot(aes(Tb, DD)) +
geom_point(shape = 1)

a ← ggplotGrob(a)
b ← e_obs_noVariety %>%

ggplot(aes(Tb, RMSE)) +
geom_point(shape = 1)

b ← ggplotGrob(b)
cc ← e_obs_noVariety %>%

ggplot(aes(RMSE, DD)) +
geom_point(shape = 1)

cc ← ggplotGrob(cc)
blank ← ggplot() + theme_void()
blank ← ggplotGrob(blank)

abc ← gridExtra :: arrangeGrob(cbind(rbind(a, b, size = "first"),
rbind(cc, blank, size = "first"),
size = "first"))

grid :: grid.newpage()
grid :: grid.draw(abc)
rm(a, b, cc, abc, blank)

}
a single best paramter (Tb, DD) set
{

e_obs_noVariety_global ←
e_obs_noVariety %>%
rename(Nstat_l = Nstat,ME_l = ME, MAE_l = MAE, RMSE_l = RMSE) %>%
mutate(stats = map2(Tb, DD, ~ DDsin_stat(pari = c(Tb = .x, DD = .y),

stats = c("Nstat", "ME", "MAE", "RMSE"),
sadalijums = sadalijums,
dd = d,
meteod = meteo$e_obs)))

e_obs_noVariety_global %>%
mutate(stats = map(stats, ~array(., c(1, length(.)), dimnames = list(NULL, names(.))) %>% as.data.frame())) %>%
unnest(cols = c(stats)) %>%
arrange(RMSE) %>% as.data.frame()

z ← e_obs_noVariety %>%
filter(Tb >= 2.5, Tb <= 4.0) %>%
arrange(RMSE)

as.data.frame(z)
range(z$DD)

}
rm(z, e_obs_noVariety_global)

#R version 4.0.5 (2021-03-31)
library("groundhog")
p ← c("tidyverse", "broom", "svglite", "gdtools", "GenSA", "gghighlight")
groundhog.library(p, "2021-02-15")
rm(p)
latvina for cultivar names
sessionInfo(); Sys.setlocale("LC_ALL", "Latvian") # lv valoda
set the data directory and load workspace
setwd("G:/Shared drives/Fenologija/Raksti/abeles/Zenodo/")
load("Apple_Pure_phenology_R_workspace_image.RData")

scirpt to recreate components included in of "Apple_Pure_phenology_R_workspace_image.RData"
{

phenology data subset having at least 14 observations owerlaping wiht meteorology data set
{

dM ← d %>%
filter(Year %in% (meteoHe_obsYear))

dM ← dM %>%
group_by(Variety) %>%
summarize(N = n()) %>%
arrange(N) %>%
filter(N >= 14) %>% # 12 skirnes
select(-N) %>%
left_join(dM)

}

FUNCTION definitinos
phenology model deifned as functino, see Kalvans et al, 2015, DDcos model for details
{

parameter set for model testing
pari = c(Tb = 10.1, DD = 200.1) # Tb - base temperature; DD - cumulative degree days for phase onset
lookup table for sin distribution
sadalijums = round((sin(seq(0, 1, 0.01) *2 *pi) + 1)/2, 2)
elementary function, start of heat sum accumulation Januar 1
DDsin_el ← function(pari,

meteoi,
sadalijums) {

pari - model parameters (Tb and DD)
meteoi - meteorology data
sadalijums - lookup table for sin distributino
a ← meteoi %>%
mutate(Tspread = Tmax - Tmin,

DD = map2(Tspread, Tmin, ~(sadalijums * .x) + .y),
DD = map(DD, ~(. -pari["Tb"])),
DD = map_dbl(DD, ~replace(., . < 0, 0) %>% sum()),
DD = DD / length(sadalijums),
DD = cumsum(DD)) %>%

filter(DD >= pari["DD"]) %>%
filter(DoY == min(DoY)) %>%
select(Date, DoY, DD) %>%
rename(Analysis_DoY = DoY)
return(a)

}
elementary function test
DDsin_el(pari = pari,

meteoi = meteoe_obsdata[[1]],
sadalijums = sadalijums)

applyign the elementary functino to full data set
DDsin ← function(pari,

sadalijums,
dd,
meteod) {

dd - phenology data,
meteod - meteorology data to be used
pari - phenology model paramters (Tb, DD)
Tb - bazes temepratura
inner_join(dd, meteod, by = c("Year")) %>%
filter(!is.na(data)) %>%
mutate(Analysis_DoY = purrr :: map(data, ~DDsin_el(pari = pari,

meteoi = .,
sadalijums = sadalijums))) %>%

unnest(cols = c(Analysis_DoY))
}
test the model for furll data set
DDsin(pari = pari,

sadalijums = sadalijums,
dd = d[c(1:10),],
meteod = meteo$e_obs)

calculating the model preformance indicators
(Nstat - number of data points; ME - mean erro; MAE - mean absolute error; RMSE - root mean squared error)
DDsin_stat ← function(pari,

stats,
sadalijums,
dd,
meteod) {

pari - parameter set for phenology model (Tb, DD)
stats - to be returned, charatet vector, any combinatio of Nstat, ME, MAE, RMSE
sadalijums - sin distribution lookutable
dd - phenology data
meteod - meteorology data
analyse ← DDsin(pari = pari,

sadalijums = sadalijums,
dd = dd,
meteod = meteod)

statistics ← analyse %>%
ungroup() %>%
mutate(dif = Full_bloom_yd - Analysis_DoY) %>%
summarize(Nstat = n(),

ME = mean(dif, na.rm = T),
MAE = mean(abs(dif), na.rm = T),
RMSE = sqrt(mean(dif^2, na.rm = T)))

statistics %>%
select(contains(stats)) %>%
unlist()

}
DDsin_stat(pari = pari,

stats = c("ME", "RMSE"),
sadalijums = sadalijums,
dd = d[c(1:20),],
meteod = meteo$e_obs)

}
model optimizatino
{

DDsinOpt ← function(pari, dd, meteod, maxit,
loweri, upperi) {

pari - phenology model initial paramters (Tb, DD)
dd - phenology data
meteod - meteorological data
maxit - maximum number of GenSA iterations, set to 1 for testing
loweri - lower bound of model parameter range (Tb, DD)
upperi - upper bound of model parameter range (Tb, DD)
if pari == NA a random set is generated
if (any(is.na(pari))) {
pari = runif(2) * (upperi - loweri) + loweri
}
test if the phenology and meteorology data oweralap in time
if (any(dd$Year %in% meteod$Year)) {
print(Sys.time())
print("DDsinOpt")
a ← GenSA :: GenSA(par = pari,

fn = DDsin_stat,
lower = loweri,
upper = upperi,
stats = c("RMSE"),
sadalijums = sadalijums,
dd = dd,
meteod = meteod,
control = list(maxit = maxit,

verbose = T,
temperature = 10000,
smooth = T,
simple.function = T))

return(a$par)
} else {
print("meteoorology and phneology data do not owerlap!")
c(Tb = NA, DD = NA)
}

}
test the optimizatino function
DDsinOpt(pari = NA, dd = d[c(200:230),], meteod = meteoH$e_obs, maxit = 1,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 10, DD = 400))
DDsinOpt(pari = c(Tb = 10.1, DD = 200.1), dd = d[c(220:235),], meteod = meteoH$e_obs, maxit = 2,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400))
}

MODEL OPTIMIZATION
model optimization by cultivar and meteorology data source, to compare the model fit between data sources
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← dM %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))
for (n in names(meteoH)) {
print(n)
a ← di %>%

mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,
lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%

t() %>% as.data.frame()),
Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),

stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteoH[[n]]) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)

rez = bind_rows(rez, a)
rm(i, a)
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_5_fix_t0_100_MeteoTest_min14.rds")
}
rm(n,i)

}
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_all.rds")
cehck the results
tail(rez)
meteo_comparison ← rez; rm(rez)

}
model optimization with e-obs data set lumped all varieties
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← d %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))

a ← di %>%
mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%
t() %>% as.data.frame()),

Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),
stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteo$e_obs) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)
rez = bind_rows(rez, a)
rm(i, a)
}

rm(n,i)
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/e_obs_noVariety.rds")
cehck the results
tail(rez)
e_obs_noVariety ← rez; rm(rez)

}
}

ILUSTRATIONS
Figure 1 periodu medians
{

dMed_year ← d %>%
group_by(Year) %>%
summarize(Med = median(Full_bloom_yd))

dMed_periods ←
tibble(Per = c("I", "II", "III"), From = c(1959, 1976, 2002), To = c(1967, 1987, 2019)) %>%
mutate(Med = map2_dbl(From, To, ~filter(d, Year >= .x, Year <= .y) %>%

summarize(Med = median(Full_bloom_yd)) %>% pull())) %>%
gather(Par, Value, -Per, -Med)

print(dMed_periods)
a ← d %>%

ggplot(aes(Year, Full_bloom_yd)) +
geom_jitter(shape = 1, width = 0.2, height = 0) +
geom_line(data = dMed_periods, mapping = aes(Value, Med, group = Per), lwd = 2, alpha = 0.5) +
scale_x_continuous(minor_breaks = c(1957, 1958, 1959:2019, 2020, 2021),

breaks = seq(1960, 2015, 5)) +
ylab("Full flowering, day of the year")

print(a)
rm(dMed_year, dMed_periods, a)

}
Figure 2 meteo salidzinajums
{

a ← meteo_salidzinajums %>%
mutate(Meteo = replace(Meteo, Meteo == "meteo.lv", "Stende meteorological station")) %>%
select(-Ncal, -Nstat, -Tb, -DD) %>%
mutate(Variety = str_replace(Variety, " ", "\n")) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
ggplot(aes(Variety, Value_e, fill = Meteo)) +
geom_boxplot() +
facet_wrap(~Error, scales = "free") +
ylab("Model error, days") +
labs(fill = ’Meteorological data source’) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),

legend.position = "bottom")
print(a)
rm(a)
statistika
meteo_salidzinajums %>%

select(-Ncal, -Nstat, -Tb, -DD) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
group_by(Error, Meteo) %>%
summarize(Med = median(Value_e)) %>%
as.data.frame()

}
Figure 3
Tb un DD e-obsam, visual inspection
{

a ← e_obs_noVariety %>%
ggplot(aes(Tb, DD)) +
geom_point(shape = 1)

a ← ggplotGrob(a)
b ← e_obs_noVariety %>%

ggplot(aes(Tb, RMSE)) +
geom_point(shape = 1)

b ← ggplotGrob(b)
cc ← e_obs_noVariety %>%

ggplot(aes(RMSE, DD)) +
geom_point(shape = 1)

cc ← ggplotGrob(cc)
blank ← ggplot() + theme_void()
blank ← ggplotGrob(blank)

abc ← gridExtra :: arrangeGrob(cbind(rbind(a, b, size = "first"),
rbind(cc, blank, size = "first"),
size = "first"))

grid :: grid.newpage()
grid :: grid.draw(abc)
rm(a, b, cc, abc, blank)

}
a single best paramter (Tb, DD) set
{

e_obs_noVariety_global ←
e_obs_noVariety %>%
rename(Nstat_l = Nstat,ME_l = ME, MAE_l = MAE, RMSE_l = RMSE) %>%
mutate(stats = map2(Tb, DD, ~ DDsin_stat(pari = c(Tb = .x, DD = .y),

stats = c("Nstat", "ME", "MAE", "RMSE"),
sadalijums = sadalijums,
dd = d,
meteod = meteo$e_obs)))

e_obs_noVariety_global %>%
mutate(stats = map(stats, ~array(., c(1, length(.)), dimnames = list(NULL, names(.))) %>% as.data.frame())) %>%
unnest(cols = c(stats)) %>%
arrange(RMSE) %>% as.data.frame()

z ← e_obs_noVariety %>%
filter(Tb >= 2.5, Tb <= 4.0) %>%
arrange(RMSE)

as.data.frame(z)
range(z$DD)

}
rm(z, e_obs_noVariety_global)

[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pūre orchard, Latvia from 1959 to 2019" (2021, Zenodo)

We analyzed 4 083 R-files[10]

[10] Sihler et al., “On the Anatomy of Real-World R Code for Static Analysis” (2024, MSR)

F. Sihler (Ulm University) flowR — Problems 9

R Scripts Fail to Replicate
#R version 4.0.5 (2021-03-31)
library("groundhog")
p ← c("tidyverse", "broom", "svglite", "gdtools", "GenSA", "gghighlight")
groundhog.library(p, "2021-02-15")
rm(p)
latvina for cultivar names
sessionInfo(); Sys.setlocale("LC_ALL", "Latvian") # lv valoda
set the data directory and load workspace
setwd("G:/Shared drives/Fenologija/Raksti/abeles/Zenodo/")
load("Apple_Pure_phenology_R_workspace_image.RData")

scirpt to recreate components included in of "Apple_Pure_phenology_R_workspace_image.RData"
{

phenology data subset having at least 14 observations owerlaping wiht meteorology data set
{

dM ← d %>%
filter(Year %in% (meteoHe_obsYear))

dM ← dM %>%
group_by(Variety) %>%
summarize(N = n()) %>%
arrange(N) %>%
filter(N >= 14) %>% # 12 skirnes
select(-N) %>%
left_join(dM)

}

FUNCTION definitinos
phenology model deifned as functino, see Kalvans et al, 2015, DDcos model for details
{

parameter set for model testing
pari = c(Tb = 10.1, DD = 200.1) # Tb - base temperature; DD - cumulative degree days for phase onset
lookup table for sin distribution
sadalijums = round((sin(seq(0, 1, 0.01) *2 *pi) + 1)/2, 2)
elementary function, start of heat sum accumulation Januar 1
DDsin_el ← function(pari,

meteoi,
sadalijums) {

pari - model parameters (Tb and DD)
meteoi - meteorology data
sadalijums - lookup table for sin distributino
a ← meteoi %>%
mutate(Tspread = Tmax - Tmin,

DD = map2(Tspread, Tmin, ~(sadalijums * .x) + .y),
DD = map(DD, ~(. -pari["Tb"])),
DD = map_dbl(DD, ~replace(., . < 0, 0) %>% sum()),
DD = DD / length(sadalijums),
DD = cumsum(DD)) %>%

filter(DD >= pari["DD"]) %>%
filter(DoY == min(DoY)) %>%
select(Date, DoY, DD) %>%
rename(Analysis_DoY = DoY)
return(a)

}
elementary function test
DDsin_el(pari = pari,

meteoi = meteoe_obsdata[[1]],
sadalijums = sadalijums)

applyign the elementary functino to full data set
DDsin ← function(pari,

sadalijums,
dd,
meteod) {

dd - phenology data,
meteod - meteorology data to be used
pari - phenology model paramters (Tb, DD)
Tb - bazes temepratura
inner_join(dd, meteod, by = c("Year")) %>%
filter(!is.na(data)) %>%
mutate(Analysis_DoY = purrr :: map(data, ~DDsin_el(pari = pari,

meteoi = .,
sadalijums = sadalijums))) %>%

unnest(cols = c(Analysis_DoY))
}
test the model for furll data set
DDsin(pari = pari,

sadalijums = sadalijums,
dd = d[c(1:10),],
meteod = meteo$e_obs)

calculating the model preformance indicators
(Nstat - number of data points; ME - mean erro; MAE - mean absolute error; RMSE - root mean squared error)
DDsin_stat ← function(pari,

stats,
sadalijums,
dd,
meteod) {

pari - parameter set for phenology model (Tb, DD)
stats - to be returned, charatet vector, any combinatio of Nstat, ME, MAE, RMSE
sadalijums - sin distribution lookutable
dd - phenology data
meteod - meteorology data
analyse ← DDsin(pari = pari,

sadalijums = sadalijums,
dd = dd,
meteod = meteod)

statistics ← analyse %>%
ungroup() %>%
mutate(dif = Full_bloom_yd - Analysis_DoY) %>%
summarize(Nstat = n(),

ME = mean(dif, na.rm = T),
MAE = mean(abs(dif), na.rm = T),
RMSE = sqrt(mean(dif^2, na.rm = T)))

statistics %>%
select(contains(stats)) %>%
unlist()

}
DDsin_stat(pari = pari,

stats = c("ME", "RMSE"),
sadalijums = sadalijums,
dd = d[c(1:20),],
meteod = meteo$e_obs)

}
model optimizatino
{

DDsinOpt ← function(pari, dd, meteod, maxit,
loweri, upperi) {

pari - phenology model initial paramters (Tb, DD)
dd - phenology data
meteod - meteorological data
maxit - maximum number of GenSA iterations, set to 1 for testing
loweri - lower bound of model parameter range (Tb, DD)
upperi - upper bound of model parameter range (Tb, DD)
if pari == NA a random set is generated
if (any(is.na(pari))) {
pari = runif(2) * (upperi - loweri) + loweri
}
test if the phenology and meteorology data oweralap in time
if (any(dd$Year %in% meteod$Year)) {
print(Sys.time())
print("DDsinOpt")
a ← GenSA :: GenSA(par = pari,

fn = DDsin_stat,
lower = loweri,
upper = upperi,
stats = c("RMSE"),
sadalijums = sadalijums,
dd = dd,
meteod = meteod,
control = list(maxit = maxit,

verbose = T,
temperature = 10000,
smooth = T,
simple.function = T))

return(a$par)
} else {
print("meteoorology and phneology data do not owerlap!")
c(Tb = NA, DD = NA)
}

}
test the optimizatino function
DDsinOpt(pari = NA, dd = d[c(200:230),], meteod = meteoH$e_obs, maxit = 1,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 10, DD = 400))
DDsinOpt(pari = c(Tb = 10.1, DD = 200.1), dd = d[c(220:235),], meteod = meteoH$e_obs, maxit = 2,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400))
}

MODEL OPTIMIZATION
model optimization by cultivar and meteorology data source, to compare the model fit between data sources
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← dM %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))
for (n in names(meteoH)) {
print(n)
a ← di %>%

mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,
lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%

t() %>% as.data.frame()),
Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),

stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteoH[[n]]) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)

rez = bind_rows(rez, a)
rm(i, a)
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_5_fix_t0_100_MeteoTest_min14.rds")
}
rm(n,i)

}
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_all.rds")
cehck the results
tail(rez)
meteo_comparison ← rez; rm(rez)

}
model optimization with e-obs data set lumped all varieties
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← d %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))

a ← di %>%
mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%
t() %>% as.data.frame()),

Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),
stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteo$e_obs) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)
rez = bind_rows(rez, a)
rm(i, a)
}

rm(n,i)
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/e_obs_noVariety.rds")
cehck the results
tail(rez)
e_obs_noVariety ← rez; rm(rez)

}
}

ILUSTRATIONS
Figure 1 periodu medians
{

dMed_year ← d %>%
group_by(Year) %>%
summarize(Med = median(Full_bloom_yd))

dMed_periods ←
tibble(Per = c("I", "II", "III"), From = c(1959, 1976, 2002), To = c(1967, 1987, 2019)) %>%
mutate(Med = map2_dbl(From, To, ~filter(d, Year >= .x, Year <= .y) %>%

summarize(Med = median(Full_bloom_yd)) %>% pull())) %>%
gather(Par, Value, -Per, -Med)

print(dMed_periods)
a ← d %>%

ggplot(aes(Year, Full_bloom_yd)) +
geom_jitter(shape = 1, width = 0.2, height = 0) +
geom_line(data = dMed_periods, mapping = aes(Value, Med, group = Per), lwd = 2, alpha = 0.5) +
scale_x_continuous(minor_breaks = c(1957, 1958, 1959:2019, 2020, 2021),

breaks = seq(1960, 2015, 5)) +
ylab("Full flowering, day of the year")

print(a)
rm(dMed_year, dMed_periods, a)

}
Figure 2 meteo salidzinajums
{

a ← meteo_salidzinajums %>%
mutate(Meteo = replace(Meteo, Meteo == "meteo.lv", "Stende meteorological station")) %>%
select(-Ncal, -Nstat, -Tb, -DD) %>%
mutate(Variety = str_replace(Variety, " ", "\n")) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
ggplot(aes(Variety, Value_e, fill = Meteo)) +
geom_boxplot() +
facet_wrap(~Error, scales = "free") +
ylab("Model error, days") +
labs(fill = ’Meteorological data source’) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),

legend.position = "bottom")
print(a)
rm(a)
statistika
meteo_salidzinajums %>%

select(-Ncal, -Nstat, -Tb, -DD) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
group_by(Error, Meteo) %>%
summarize(Med = median(Value_e)) %>%
as.data.frame()

}
Figure 3
Tb un DD e-obsam, visual inspection
{

a ← e_obs_noVariety %>%
ggplot(aes(Tb, DD)) +
geom_point(shape = 1)

a ← ggplotGrob(a)
b ← e_obs_noVariety %>%

ggplot(aes(Tb, RMSE)) +
geom_point(shape = 1)

b ← ggplotGrob(b)
cc ← e_obs_noVariety %>%

ggplot(aes(RMSE, DD)) +
geom_point(shape = 1)

cc ← ggplotGrob(cc)
blank ← ggplot() + theme_void()
blank ← ggplotGrob(blank)

abc ← gridExtra :: arrangeGrob(cbind(rbind(a, b, size = "first"),
rbind(cc, blank, size = "first"),
size = "first"))

grid :: grid.newpage()
grid :: grid.draw(abc)
rm(a, b, cc, abc, blank)

}
a single best paramter (Tb, DD) set
{

e_obs_noVariety_global ←
e_obs_noVariety %>%
rename(Nstat_l = Nstat,ME_l = ME, MAE_l = MAE, RMSE_l = RMSE) %>%
mutate(stats = map2(Tb, DD, ~ DDsin_stat(pari = c(Tb = .x, DD = .y),

stats = c("Nstat", "ME", "MAE", "RMSE"),
sadalijums = sadalijums,
dd = d,
meteod = meteo$e_obs)))

e_obs_noVariety_global %>%
mutate(stats = map(stats, ~array(., c(1, length(.)), dimnames = list(NULL, names(.))) %>% as.data.frame())) %>%
unnest(cols = c(stats)) %>%
arrange(RMSE) %>% as.data.frame()

z ← e_obs_noVariety %>%
filter(Tb >= 2.5, Tb <= 4.0) %>%
arrange(RMSE)

as.data.frame(z)
range(z$DD)

}
rm(z, e_obs_noVariety_global)

#R version 4.0.5 (2021-03-31)
library("groundhog")
p ← c("tidyverse", "broom", "svglite", "gdtools", "GenSA", "gghighlight")
groundhog.library(p, "2021-02-15")
rm(p)
latvina for cultivar names
sessionInfo(); Sys.setlocale("LC_ALL", "Latvian") # lv valoda
set the data directory and load workspace
setwd("G:/Shared drives/Fenologija/Raksti/abeles/Zenodo/")
load("Apple_Pure_phenology_R_workspace_image.RData")

scirpt to recreate components included in of "Apple_Pure_phenology_R_workspace_image.RData"
{

phenology data subset having at least 14 observations owerlaping wiht meteorology data set
{

dM ← d %>%
filter(Year %in% (meteoHe_obsYear))

dM ← dM %>%
group_by(Variety) %>%
summarize(N = n()) %>%
arrange(N) %>%
filter(N >= 14) %>% # 12 skirnes
select(-N) %>%
left_join(dM)

}

FUNCTION definitinos
phenology model deifned as functino, see Kalvans et al, 2015, DDcos model for details
{

parameter set for model testing
pari = c(Tb = 10.1, DD = 200.1) # Tb - base temperature; DD - cumulative degree days for phase onset
lookup table for sin distribution
sadalijums = round((sin(seq(0, 1, 0.01) *2 *pi) + 1)/2, 2)
elementary function, start of heat sum accumulation Januar 1
DDsin_el ← function(pari,

meteoi,
sadalijums) {

pari - model parameters (Tb and DD)
meteoi - meteorology data
sadalijums - lookup table for sin distributino
a ← meteoi %>%
mutate(Tspread = Tmax - Tmin,

DD = map2(Tspread, Tmin, ~(sadalijums * .x) + .y),
DD = map(DD, ~(. -pari["Tb"])),
DD = map_dbl(DD, ~replace(., . < 0, 0) %>% sum()),
DD = DD / length(sadalijums),
DD = cumsum(DD)) %>%

filter(DD >= pari["DD"]) %>%
filter(DoY == min(DoY)) %>%
select(Date, DoY, DD) %>%
rename(Analysis_DoY = DoY)
return(a)

}
elementary function test
DDsin_el(pari = pari,

meteoi = meteoe_obsdata[[1]],
sadalijums = sadalijums)

applyign the elementary functino to full data set
DDsin ← function(pari,

sadalijums,
dd,
meteod) {

dd - phenology data,
meteod - meteorology data to be used
pari - phenology model paramters (Tb, DD)
Tb - bazes temepratura
inner_join(dd, meteod, by = c("Year")) %>%
filter(!is.na(data)) %>%
mutate(Analysis_DoY = purrr :: map(data, ~DDsin_el(pari = pari,

meteoi = .,
sadalijums = sadalijums))) %>%

unnest(cols = c(Analysis_DoY))
}
test the model for furll data set
DDsin(pari = pari,

sadalijums = sadalijums,
dd = d[c(1:10),],
meteod = meteo$e_obs)

calculating the model preformance indicators
(Nstat - number of data points; ME - mean erro; MAE - mean absolute error; RMSE - root mean squared error)
DDsin_stat ← function(pari,

stats,
sadalijums,
dd,
meteod) {

pari - parameter set for phenology model (Tb, DD)
stats - to be returned, charatet vector, any combinatio of Nstat, ME, MAE, RMSE
sadalijums - sin distribution lookutable
dd - phenology data
meteod - meteorology data
analyse ← DDsin(pari = pari,

sadalijums = sadalijums,
dd = dd,
meteod = meteod)

statistics ← analyse %>%
ungroup() %>%
mutate(dif = Full_bloom_yd - Analysis_DoY) %>%
summarize(Nstat = n(),

ME = mean(dif, na.rm = T),
MAE = mean(abs(dif), na.rm = T),
RMSE = sqrt(mean(dif^2, na.rm = T)))

statistics %>%
select(contains(stats)) %>%
unlist()

}
DDsin_stat(pari = pari,

stats = c("ME", "RMSE"),
sadalijums = sadalijums,
dd = d[c(1:20),],
meteod = meteo$e_obs)

}
model optimizatino
{

DDsinOpt ← function(pari, dd, meteod, maxit,
loweri, upperi) {

pari - phenology model initial paramters (Tb, DD)
dd - phenology data
meteod - meteorological data
maxit - maximum number of GenSA iterations, set to 1 for testing
loweri - lower bound of model parameter range (Tb, DD)
upperi - upper bound of model parameter range (Tb, DD)
if pari == NA a random set is generated
if (any(is.na(pari))) {
pari = runif(2) * (upperi - loweri) + loweri
}
test if the phenology and meteorology data oweralap in time
if (any(dd$Year %in% meteod$Year)) {
print(Sys.time())
print("DDsinOpt")
a ← GenSA :: GenSA(par = pari,

fn = DDsin_stat,
lower = loweri,
upper = upperi,
stats = c("RMSE"),
sadalijums = sadalijums,
dd = dd,
meteod = meteod,
control = list(maxit = maxit,

verbose = T,
temperature = 10000,
smooth = T,
simple.function = T))

return(a$par)
} else {
print("meteoorology and phneology data do not owerlap!")
c(Tb = NA, DD = NA)
}

}
test the optimizatino function
DDsinOpt(pari = NA, dd = d[c(200:230),], meteod = meteoH$e_obs, maxit = 1,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 10, DD = 400))
DDsinOpt(pari = c(Tb = 10.1, DD = 200.1), dd = d[c(220:235),], meteod = meteoH$e_obs, maxit = 2,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400))
}

MODEL OPTIMIZATION
model optimization by cultivar and meteorology data source, to compare the model fit between data sources
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← dM %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))
for (n in names(meteoH)) {
print(n)
a ← di %>%

mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,
lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%

t() %>% as.data.frame()),
Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),

stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteoH[[n]]) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)

rez = bind_rows(rez, a)
rm(i, a)
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_5_fix_t0_100_MeteoTest_min14.rds")
}
rm(n,i)

}
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_all.rds")
cehck the results
tail(rez)
meteo_comparison ← rez; rm(rez)

}
model optimization with e-obs data set lumped all varieties
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← d %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))

a ← di %>%
mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%
t() %>% as.data.frame()),

Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),
stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteo$e_obs) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)
rez = bind_rows(rez, a)
rm(i, a)
}

rm(n,i)
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/e_obs_noVariety.rds")
cehck the results
tail(rez)
e_obs_noVariety ← rez; rm(rez)

}
}

ILUSTRATIONS
Figure 1 periodu medians
{

dMed_year ← d %>%
group_by(Year) %>%
summarize(Med = median(Full_bloom_yd))

dMed_periods ←
tibble(Per = c("I", "II", "III"), From = c(1959, 1976, 2002), To = c(1967, 1987, 2019)) %>%
mutate(Med = map2_dbl(From, To, ~filter(d, Year >= .x, Year <= .y) %>%

summarize(Med = median(Full_bloom_yd)) %>% pull())) %>%
gather(Par, Value, -Per, -Med)

print(dMed_periods)
a ← d %>%

ggplot(aes(Year, Full_bloom_yd)) +
geom_jitter(shape = 1, width = 0.2, height = 0) +
geom_line(data = dMed_periods, mapping = aes(Value, Med, group = Per), lwd = 2, alpha = 0.5) +
scale_x_continuous(minor_breaks = c(1957, 1958, 1959:2019, 2020, 2021),

breaks = seq(1960, 2015, 5)) +
ylab("Full flowering, day of the year")

print(a)
rm(dMed_year, dMed_periods, a)

}
Figure 2 meteo salidzinajums
{

a ← meteo_salidzinajums %>%
mutate(Meteo = replace(Meteo, Meteo == "meteo.lv", "Stende meteorological station")) %>%
select(-Ncal, -Nstat, -Tb, -DD) %>%
mutate(Variety = str_replace(Variety, " ", "\n")) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
ggplot(aes(Variety, Value_e, fill = Meteo)) +
geom_boxplot() +
facet_wrap(~Error, scales = "free") +
ylab("Model error, days") +
labs(fill = ’Meteorological data source’) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),

legend.position = "bottom")
print(a)
rm(a)
statistika
meteo_salidzinajums %>%

select(-Ncal, -Nstat, -Tb, -DD) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
group_by(Error, Meteo) %>%
summarize(Med = median(Value_e)) %>%
as.data.frame()

}
Figure 3
Tb un DD e-obsam, visual inspection
{

a ← e_obs_noVariety %>%
ggplot(aes(Tb, DD)) +
geom_point(shape = 1)

a ← ggplotGrob(a)
b ← e_obs_noVariety %>%

ggplot(aes(Tb, RMSE)) +
geom_point(shape = 1)

b ← ggplotGrob(b)
cc ← e_obs_noVariety %>%

ggplot(aes(RMSE, DD)) +
geom_point(shape = 1)

cc ← ggplotGrob(cc)
blank ← ggplot() + theme_void()
blank ← ggplotGrob(blank)

abc ← gridExtra :: arrangeGrob(cbind(rbind(a, b, size = "first"),
rbind(cc, blank, size = "first"),
size = "first"))

grid :: grid.newpage()
grid :: grid.draw(abc)
rm(a, b, cc, abc, blank)

}
a single best paramter (Tb, DD) set
{

e_obs_noVariety_global ←
e_obs_noVariety %>%
rename(Nstat_l = Nstat,ME_l = ME, MAE_l = MAE, RMSE_l = RMSE) %>%
mutate(stats = map2(Tb, DD, ~ DDsin_stat(pari = c(Tb = .x, DD = .y),

stats = c("Nstat", "ME", "MAE", "RMSE"),
sadalijums = sadalijums,
dd = d,
meteod = meteo$e_obs)))

e_obs_noVariety_global %>%
mutate(stats = map(stats, ~array(., c(1, length(.)), dimnames = list(NULL, names(.))) %>% as.data.frame())) %>%
unnest(cols = c(stats)) %>%
arrange(RMSE) %>% as.data.frame()

z ← e_obs_noVariety %>%
filter(Tb >= 2.5, Tb <= 4.0) %>%
arrange(RMSE)

as.data.frame(z)
range(z$DD)

}
rm(z, e_obs_noVariety_global)

#R version 4.0.5 (2021-03-31)
library("groundhog")
p ← c("tidyverse", "broom", "svglite", "gdtools", "GenSA", "gghighlight")
groundhog.library(p, "2021-02-15")
rm(p)
latvina for cultivar names
sessionInfo(); Sys.setlocale("LC_ALL", "Latvian") # lv valoda
set the data directory and load workspace
setwd("G:/Shared drives/Fenologija/Raksti/abeles/Zenodo/")
load("Apple_Pure_phenology_R_workspace_image.RData")

scirpt to recreate components included in of "Apple_Pure_phenology_R_workspace_image.RData"
{

phenology data subset having at least 14 observations owerlaping wiht meteorology data set
{

dM ← d %>%
filter(Year %in% (meteoHe_obsYear))

dM ← dM %>%
group_by(Variety) %>%
summarize(N = n()) %>%
arrange(N) %>%
filter(N >= 14) %>% # 12 skirnes
select(-N) %>%
left_join(dM)

}

FUNCTION definitinos
phenology model deifned as functino, see Kalvans et al, 2015, DDcos model for details
{

parameter set for model testing
pari = c(Tb = 10.1, DD = 200.1) # Tb - base temperature; DD - cumulative degree days for phase onset
lookup table for sin distribution
sadalijums = round((sin(seq(0, 1, 0.01) *2 *pi) + 1)/2, 2)
elementary function, start of heat sum accumulation Januar 1
DDsin_el ← function(pari,

meteoi,
sadalijums) {

pari - model parameters (Tb and DD)
meteoi - meteorology data
sadalijums - lookup table for sin distributino
a ← meteoi %>%
mutate(Tspread = Tmax - Tmin,

DD = map2(Tspread, Tmin, ~(sadalijums * .x) + .y),
DD = map(DD, ~(. -pari["Tb"])),
DD = map_dbl(DD, ~replace(., . < 0, 0) %>% sum()),
DD = DD / length(sadalijums),
DD = cumsum(DD)) %>%

filter(DD >= pari["DD"]) %>%
filter(DoY == min(DoY)) %>%
select(Date, DoY, DD) %>%
rename(Analysis_DoY = DoY)
return(a)

}
elementary function test
DDsin_el(pari = pari,

meteoi = meteoe_obsdata[[1]],
sadalijums = sadalijums)

applyign the elementary functino to full data set
DDsin ← function(pari,

sadalijums,
dd,
meteod) {

dd - phenology data,
meteod - meteorology data to be used
pari - phenology model paramters (Tb, DD)
Tb - bazes temepratura
inner_join(dd, meteod, by = c("Year")) %>%
filter(!is.na(data)) %>%
mutate(Analysis_DoY = purrr :: map(data, ~DDsin_el(pari = pari,

meteoi = .,
sadalijums = sadalijums))) %>%

unnest(cols = c(Analysis_DoY))
}
test the model for furll data set
DDsin(pari = pari,

sadalijums = sadalijums,
dd = d[c(1:10),],
meteod = meteo$e_obs)

calculating the model preformance indicators
(Nstat - number of data points; ME - mean erro; MAE - mean absolute error; RMSE - root mean squared error)
DDsin_stat ← function(pari,

stats,
sadalijums,
dd,
meteod) {

pari - parameter set for phenology model (Tb, DD)
stats - to be returned, charatet vector, any combinatio of Nstat, ME, MAE, RMSE
sadalijums - sin distribution lookutable
dd - phenology data
meteod - meteorology data
analyse ← DDsin(pari = pari,

sadalijums = sadalijums,
dd = dd,
meteod = meteod)

statistics ← analyse %>%
ungroup() %>%
mutate(dif = Full_bloom_yd - Analysis_DoY) %>%
summarize(Nstat = n(),

ME = mean(dif, na.rm = T),
MAE = mean(abs(dif), na.rm = T),
RMSE = sqrt(mean(dif^2, na.rm = T)))

statistics %>%
select(contains(stats)) %>%
unlist()

}
DDsin_stat(pari = pari,

stats = c("ME", "RMSE"),
sadalijums = sadalijums,
dd = d[c(1:20),],
meteod = meteo$e_obs)

}
model optimizatino
{

DDsinOpt ← function(pari, dd, meteod, maxit,
loweri, upperi) {

pari - phenology model initial paramters (Tb, DD)
dd - phenology data
meteod - meteorological data
maxit - maximum number of GenSA iterations, set to 1 for testing
loweri - lower bound of model parameter range (Tb, DD)
upperi - upper bound of model parameter range (Tb, DD)
if pari == NA a random set is generated
if (any(is.na(pari))) {
pari = runif(2) * (upperi - loweri) + loweri
}
test if the phenology and meteorology data oweralap in time
if (any(dd$Year %in% meteod$Year)) {
print(Sys.time())
print("DDsinOpt")
a ← GenSA :: GenSA(par = pari,

fn = DDsin_stat,
lower = loweri,
upper = upperi,
stats = c("RMSE"),
sadalijums = sadalijums,
dd = dd,
meteod = meteod,
control = list(maxit = maxit,

verbose = T,
temperature = 10000,
smooth = T,
simple.function = T))

return(a$par)
} else {
print("meteoorology and phneology data do not owerlap!")
c(Tb = NA, DD = NA)
}

}
test the optimizatino function
DDsinOpt(pari = NA, dd = d[c(200:230),], meteod = meteoH$e_obs, maxit = 1,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 10, DD = 400))
DDsinOpt(pari = c(Tb = 10.1, DD = 200.1), dd = d[c(220:235),], meteod = meteoH$e_obs, maxit = 2,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400))
}

MODEL OPTIMIZATION
model optimization by cultivar and meteorology data source, to compare the model fit between data sources
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← dM %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))
for (n in names(meteoH)) {
print(n)
a ← di %>%

mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,
lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%

t() %>% as.data.frame()),
Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),

stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteoH[[n]]) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)

rez = bind_rows(rez, a)
rm(i, a)
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_5_fix_t0_100_MeteoTest_min14.rds")
}
rm(n,i)

}
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_all.rds")
cehck the results
tail(rez)
meteo_comparison ← rez; rm(rez)

}
model optimization with e-obs data set lumped all varieties
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← d %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))

a ← di %>%
mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%
t() %>% as.data.frame()),

Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),
stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteo$e_obs) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)
rez = bind_rows(rez, a)
rm(i, a)
}

rm(n,i)
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/e_obs_noVariety.rds")
cehck the results
tail(rez)
e_obs_noVariety ← rez; rm(rez)

}
}

ILUSTRATIONS
Figure 1 periodu medians
{

dMed_year ← d %>%
group_by(Year) %>%
summarize(Med = median(Full_bloom_yd))

dMed_periods ←
tibble(Per = c("I", "II", "III"), From = c(1959, 1976, 2002), To = c(1967, 1987, 2019)) %>%
mutate(Med = map2_dbl(From, To, ~filter(d, Year >= .x, Year <= .y) %>%

summarize(Med = median(Full_bloom_yd)) %>% pull())) %>%
gather(Par, Value, -Per, -Med)

print(dMed_periods)
a ← d %>%

ggplot(aes(Year, Full_bloom_yd)) +
geom_jitter(shape = 1, width = 0.2, height = 0) +
geom_line(data = dMed_periods, mapping = aes(Value, Med, group = Per), lwd = 2, alpha = 0.5) +
scale_x_continuous(minor_breaks = c(1957, 1958, 1959:2019, 2020, 2021),

breaks = seq(1960, 2015, 5)) +
ylab("Full flowering, day of the year")

print(a)
rm(dMed_year, dMed_periods, a)

}
Figure 2 meteo salidzinajums
{

a ← meteo_salidzinajums %>%
mutate(Meteo = replace(Meteo, Meteo == "meteo.lv", "Stende meteorological station")) %>%
select(-Ncal, -Nstat, -Tb, -DD) %>%
mutate(Variety = str_replace(Variety, " ", "\n")) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
ggplot(aes(Variety, Value_e, fill = Meteo)) +
geom_boxplot() +
facet_wrap(~Error, scales = "free") +
ylab("Model error, days") +
labs(fill = ’Meteorological data source’) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),

legend.position = "bottom")
print(a)
rm(a)
statistika
meteo_salidzinajums %>%

select(-Ncal, -Nstat, -Tb, -DD) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
group_by(Error, Meteo) %>%
summarize(Med = median(Value_e)) %>%
as.data.frame()

}
Figure 3
Tb un DD e-obsam, visual inspection
{

a ← e_obs_noVariety %>%
ggplot(aes(Tb, DD)) +
geom_point(shape = 1)

a ← ggplotGrob(a)
b ← e_obs_noVariety %>%

ggplot(aes(Tb, RMSE)) +
geom_point(shape = 1)

b ← ggplotGrob(b)
cc ← e_obs_noVariety %>%

ggplot(aes(RMSE, DD)) +
geom_point(shape = 1)

cc ← ggplotGrob(cc)
blank ← ggplot() + theme_void()
blank ← ggplotGrob(blank)

abc ← gridExtra :: arrangeGrob(cbind(rbind(a, b, size = "first"),
rbind(cc, blank, size = "first"),
size = "first"))

grid :: grid.newpage()
grid :: grid.draw(abc)
rm(a, b, cc, abc, blank)

}
a single best paramter (Tb, DD) set
{

e_obs_noVariety_global ←
e_obs_noVariety %>%
rename(Nstat_l = Nstat,ME_l = ME, MAE_l = MAE, RMSE_l = RMSE) %>%
mutate(stats = map2(Tb, DD, ~ DDsin_stat(pari = c(Tb = .x, DD = .y),

stats = c("Nstat", "ME", "MAE", "RMSE"),
sadalijums = sadalijums,
dd = d,
meteod = meteo$e_obs)))

e_obs_noVariety_global %>%
mutate(stats = map(stats, ~array(., c(1, length(.)), dimnames = list(NULL, names(.))) %>% as.data.frame())) %>%
unnest(cols = c(stats)) %>%
arrange(RMSE) %>% as.data.frame()

z ← e_obs_noVariety %>%
filter(Tb >= 2.5, Tb <= 4.0) %>%
arrange(RMSE)

as.data.frame(z)
range(z$DD)

}
rm(z, e_obs_noVariety_global)

Hardcoded Paths

(Pseudo-)Randomness without Seed

[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pūre orchard, Latvia from 1959 to 2019" (2021, Zenodo)

74 % even fail to complete![1]

[1] Trisovic et al., “A Large-Scale Study on Research Code Quality and Execution” (2022, Nature Publishing Group)

F. Sihler (Ulm University) flowR — Problems 10

R Scripts Do Too Much
#R version 4.0.5 (2021-03-31)
library("groundhog")
p ← c("tidyverse", "broom", "svglite", "gdtools", "GenSA", "gghighlight")
groundhog.library(p, "2021-02-15")
rm(p)
latvina for cultivar names
sessionInfo(); Sys.setlocale("LC_ALL", "Latvian") # lv valoda
set the data directory and load workspace
setwd("G:/Shared drives/Fenologija/Raksti/abeles/Zenodo/")
load("Apple_Pure_phenology_R_workspace_image.RData")

scirpt to recreate components included in of "Apple_Pure_phenology_R_workspace_image.RData"
{

phenology data subset having at least 14 observations owerlaping wiht meteorology data set
{

dM ← d %>%
filter(Year %in% (meteoHe_obsYear))

dM ← dM %>%
group_by(Variety) %>%
summarize(N = n()) %>%
arrange(N) %>%
filter(N >= 14) %>% # 12 skirnes
select(-N) %>%
left_join(dM)

}

FUNCTION definitinos
phenology model deifned as functino, see Kalvans et al, 2015, DDcos model for details
{

parameter set for model testing
pari = c(Tb = 10.1, DD = 200.1) # Tb - base temperature; DD - cumulative degree days for phase onset
lookup table for sin distribution
sadalijums = round((sin(seq(0, 1, 0.01) *2 *pi) + 1)/2, 2)
elementary function, start of heat sum accumulation Januar 1
DDsin_el ← function(pari,

meteoi,
sadalijums) {

pari - model parameters (Tb and DD)
meteoi - meteorology data
sadalijums - lookup table for sin distributino
a ← meteoi %>%
mutate(Tspread = Tmax - Tmin,

DD = map2(Tspread, Tmin, ~(sadalijums * .x) + .y),
DD = map(DD, ~(. -pari["Tb"])),
DD = map_dbl(DD, ~replace(., . < 0, 0) %>% sum()),
DD = DD / length(sadalijums),
DD = cumsum(DD)) %>%

filter(DD >= pari["DD"]) %>%
filter(DoY == min(DoY)) %>%
select(Date, DoY, DD) %>%
rename(Analysis_DoY = DoY)
return(a)

}
elementary function test
DDsin_el(pari = pari,

meteoi = meteoe_obsdata[[1]],
sadalijums = sadalijums)

applyign the elementary functino to full data set
DDsin ← function(pari,

sadalijums,
dd,
meteod) {

dd - phenology data,
meteod - meteorology data to be used
pari - phenology model paramters (Tb, DD)
Tb - bazes temepratura
inner_join(dd, meteod, by = c("Year")) %>%
filter(!is.na(data)) %>%
mutate(Analysis_DoY = purrr :: map(data, ~DDsin_el(pari = pari,

meteoi = .,
sadalijums = sadalijums))) %>%

unnest(cols = c(Analysis_DoY))
}
test the model for furll data set
DDsin(pari = pari,

sadalijums = sadalijums,
dd = d[c(1:10),],
meteod = meteo$e_obs)

calculating the model preformance indicators
(Nstat - number of data points; ME - mean erro; MAE - mean absolute error; RMSE - root mean squared error)
DDsin_stat ← function(pari,

stats,
sadalijums,
dd,
meteod) {

pari - parameter set for phenology model (Tb, DD)
stats - to be returned, charatet vector, any combinatio of Nstat, ME, MAE, RMSE
sadalijums - sin distribution lookutable
dd - phenology data
meteod - meteorology data
analyse ← DDsin(pari = pari,

sadalijums = sadalijums,
dd = dd,
meteod = meteod)

statistics ← analyse %>%
ungroup() %>%
mutate(dif = Full_bloom_yd - Analysis_DoY) %>%
summarize(Nstat = n(),

ME = mean(dif, na.rm = T),
MAE = mean(abs(dif), na.rm = T),
RMSE = sqrt(mean(dif^2, na.rm = T)))

statistics %>%
select(contains(stats)) %>%
unlist()

}
DDsin_stat(pari = pari,

stats = c("ME", "RMSE"),
sadalijums = sadalijums,
dd = d[c(1:20),],
meteod = meteo$e_obs)

}
model optimizatino
{

DDsinOpt ← function(pari, dd, meteod, maxit,
loweri, upperi) {

pari - phenology model initial paramters (Tb, DD)
dd - phenology data
meteod - meteorological data
maxit - maximum number of GenSA iterations, set to 1 for testing
loweri - lower bound of model parameter range (Tb, DD)
upperi - upper bound of model parameter range (Tb, DD)
if pari == NA a random set is generated
if (any(is.na(pari))) {
pari = runif(2) * (upperi - loweri) + loweri
}
test if the phenology and meteorology data oweralap in time
if (any(dd$Year %in% meteod$Year)) {
print(Sys.time())
print("DDsinOpt")
a ← GenSA :: GenSA(par = pari,

fn = DDsin_stat,
lower = loweri,
upper = upperi,
stats = c("RMSE"),
sadalijums = sadalijums,
dd = dd,
meteod = meteod,
control = list(maxit = maxit,

verbose = T,
temperature = 10000,
smooth = T,
simple.function = T))

return(a$par)
} else {
print("meteoorology and phneology data do not owerlap!")
c(Tb = NA, DD = NA)
}

}
test the optimizatino function
DDsinOpt(pari = NA, dd = d[c(200:230),], meteod = meteoH$e_obs, maxit = 1,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 10, DD = 400))
DDsinOpt(pari = c(Tb = 10.1, DD = 200.1), dd = d[c(220:235),], meteod = meteoH$e_obs, maxit = 2,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400))
}

MODEL OPTIMIZATION
model optimization by cultivar and meteorology data source, to compare the model fit between data sources
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← dM %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))
for (n in names(meteoH)) {
print(n)
a ← di %>%

mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,
lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%

t() %>% as.data.frame()),
Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),

stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteoH[[n]]) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)

rez = bind_rows(rez, a)
rm(i, a)
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_5_fix_t0_100_MeteoTest_min14.rds")
}
rm(n,i)

}
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/fit_all.rds")
cehck the results
tail(rez)
meteo_comparison ← rez; rm(rez)

}
model optimization with e-obs data set lumped all varieties
{

emty object to store optimizatio results
rez = c()
initial parameter set;
pari = c(Tb = NA, DD = NA)
for(i in c(1:100)) {

print(i)
di ← d %>%
group_by(Variety) %>%
nest() %>%
mutate(data = map(data, ~mutate(., Cal = as.logical(rbinom(dim(.)[1], size = 1, prob = 0.5)))),

Ncal = map_dbl(data, ~summarize(., Ncal = sum(Cal)) %>% unlist()))

a ← di %>%
mutate(Gensa = map(data, ~DDsinOpt(pari = pari, dd = filter(., Cal), meteod = meteoH[[n]], maxit = 5,

lower = c(Tb = 0, DD = 100), upper = c(Tb = 11, DD = 400)) %>%
t() %>% as.data.frame()),

Stat = map2(Gensa, data, ~DDsin_stat(pari = unlist(.x),
stats = c("Nstat" ,"ME", "MAE","RMSE"),
dd = .y %>% filter(!Cal),
sadalijums = sadalijums,
meteod = meteo$e_obs) %>%

t() %>% as.data.frame())) %>%
select(Variety, Ncal, Gensa, Stat) %>%
unnest(cols = c(Gensa, Stat)) %>%
mutate(Meteo = n)
rez = bind_rows(rez, a)
rm(i, a)
}

rm(n,i)
save the results
write_rds(rez, "G:/Shared drives/Fenologija/Raksti/abeles/rez_R/e_obs_noVariety.rds")
cehck the results
tail(rez)
e_obs_noVariety ← rez; rm(rez)

}
}

ILUSTRATIONS
Figure 1 periodu medians
{

dMed_year ← d %>%
group_by(Year) %>%
summarize(Med = median(Full_bloom_yd))

dMed_periods ←
tibble(Per = c("I", "II", "III"), From = c(1959, 1976, 2002), To = c(1967, 1987, 2019)) %>%
mutate(Med = map2_dbl(From, To, ~filter(d, Year >= .x, Year <= .y) %>%

summarize(Med = median(Full_bloom_yd)) %>% pull())) %>%
gather(Par, Value, -Per, -Med)

print(dMed_periods)
a ← d %>%

ggplot(aes(Year, Full_bloom_yd)) +
geom_jitter(shape = 1, width = 0.2, height = 0) +
geom_line(data = dMed_periods, mapping = aes(Value, Med, group = Per), lwd = 2, alpha = 0.5) +
scale_x_continuous(minor_breaks = c(1957, 1958, 1959:2019, 2020, 2021),

breaks = seq(1960, 2015, 5)) +
ylab("Full flowering, day of the year")

print(a)
rm(dMed_year, dMed_periods, a)

}
Figure 2 meteo salidzinajums
{

a ← meteo_salidzinajums %>%
mutate(Meteo = replace(Meteo, Meteo == "meteo.lv", "Stende meteorological station")) %>%
select(-Ncal, -Nstat, -Tb, -DD) %>%
mutate(Variety = str_replace(Variety, " ", "\n")) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
ggplot(aes(Variety, Value_e, fill = Meteo)) +
geom_boxplot() +
facet_wrap(~Error, scales = "free") +
ylab("Model error, days") +
labs(fill = ’Meteorological data source’) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),

legend.position = "bottom")
print(a)
rm(a)
statistika
meteo_salidzinajums %>%

select(-Ncal, -Nstat, -Tb, -DD) %>%
gather(Error, Value_e, -Variety, -Meteo) %>%
group_by(Error, Meteo) %>%
summarize(Med = median(Value_e)) %>%
as.data.frame()

}
Figure 3
Tb un DD e-obsam, visual inspection
{

a ← e_obs_noVariety %>%
ggplot(aes(Tb, DD)) +
geom_point(shape = 1)

a ← ggplotGrob(a)
b ← e_obs_noVariety %>%

ggplot(aes(Tb, RMSE)) +
geom_point(shape = 1)

b ← ggplotGrob(b)
cc ← e_obs_noVariety %>%

ggplot(aes(RMSE, DD)) +
geom_point(shape = 1)

cc ← ggplotGrob(cc)
blank ← ggplot() + theme_void()
blank ← ggplotGrob(blank)

abc ← gridExtra :: arrangeGrob(cbind(rbind(a, b, size = "first"),
rbind(cc, blank, size = "first"),
size = "first"))

grid :: grid.newpage()
grid :: grid.draw(abc)
rm(a, b, cc, abc, blank)

}
a single best paramter (Tb, DD) set
{

e_obs_noVariety_global ←
e_obs_noVariety %>%
rename(Nstat_l = Nstat,ME_l = ME, MAE_l = MAE, RMSE_l = RMSE) %>%
mutate(stats = map2(Tb, DD, ~ DDsin_stat(pari = c(Tb = .x, DD = .y),

stats = c("Nstat", "ME", "MAE", "RMSE"),
sadalijums = sadalijums,
dd = d,
meteod = meteo$e_obs)))

e_obs_noVariety_global %>%
mutate(stats = map(stats, ~array(., c(1, length(.)), dimnames = list(NULL, names(.))) %>% as.data.frame())) %>%
unnest(cols = c(stats)) %>%
arrange(RMSE) %>% as.data.frame()

z ← e_obs_noVariety %>%
filter(Tb >= 2.5, Tb <= 4.0) %>%
arrange(RMSE)

as.data.frame(z)
range(z$DD)

}
rm(z, e_obs_noVariety_global)

Model

Model

Figure
Figure
Figure

• Several analyses in one script

• Hard to comprehend

• Hard to extract/re-use parts

[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pūre orchard, Latvia from 1959 to 2019" (2021, Zenodo)

F. Sihler (Ulm University) flowR — Problems 11

R Scripts Are Hard to Analyze

[11] mod.proj_wc← ecospat.ESM.Projection(ESM.modeling.output=mod,
new.env=eval(parse(text = paste("env_",period,"_wc",sep=""))))

 String-based code evaluation

[12] pull.cat ← function(x) {
bins ← up_bins # (e.g., 6)
increments ← (range(x)[2] - range(x)[1])/(bins - 1)
to_return ← seq(range(x)[1], range(x)[2], increments)
return(to_return)

}
up.cat ← function(new_bins) {

up_bins = new_bins
body(pull.cat)[[2]] ↞ substitute(bins ← up_bins)

}
 Self-modifying code

[12] Robertson, Social hierarchy reveals thermoregulatory trade- offs in response to repeated stressors (2020, Zenodo) [L. 68ff]
[11] Ma et al., Predicting range shifts of pikas (Mammalia, Ochotonidae) in China under scenarios incorporating land-use change, climate change, and dispersal limitations (2021, Zenodo) [L. 135f]

F. Sihler (Ulm University) flowR — Problems 12

R Misses Sophisticated Analysis Tools

• RStudio IDE posit.co

• Syntax-highlighting and auto-completion
• Refactorings (rename, extract functions and variables)

• R language server github.com/REditorSupport

• Syntax-highlighting and auto-completion
• Reference tracing & Refactorings (rename)

• {lintr} github.com/r-lib/lintr

• Style & syntax errors
• Potential semantic errors

• {CodeDepends} github.com/duncantl/CodeDepends

• Dependency analysis
• Creation of call-graphs

Often wrong (simple heuristics)

Often wrong (XPath-Expressions)

XPath-Expressions, packages

Only top scope

F. Sihler (Ulm University) flowR — Problems 13

https://posit.co/products/open-source/rstudio/
https://github.com/REditorSupport/languageserver/
https://github.com/r-lib/lintr
https://github.com/duncantl/CodeDepends

R Scripts . . .

1. fail to replicate

2. do too much

3. are hard to analyze

4. are not well supported by tools

Better Software, Better Research

F. Sihler (Ulm University) flowR — Problems 14

The R Code Static Analysis Landscape
goal method impl. lang. op. a

ssi
gn

men
ts

func.
as

sig
nmen

ts

va
lue tra

ce
(a.

i.,
. . .

)

co
ntro

lflow

non-st
d. e

va
l.

sp
ec

ial
opera

tors

functi
on ca

lls

lib
rar

ies

quotat
ion

refl
ec

tio
n

sid
e eff

ec
ts

sta
tic

sco
pe

dyn
am

ic
sco

pe

typ
e infer

en
ce

pointer
an

aly
sis

ex
ter

nal
files

pre-
proce

sso
rs

hooks
FF

I

[13] {CodeDepends} static analysis AST visitor R ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○
[14] {codetools} static analysis AST visitor R ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○
[15] {checkglobals} missing libs. AST visitor R, C ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣
[16] {rstatic} static analysis AST visitor R ○ ○␣ ○ ○␣ ○
[17] {CodeAnalysis} static analysis AST visitor R ○ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣
[18] {RTypeInference} type inference AST visitor R ○ ○␣ ○ ○␣ ○ ○
[19] {pkgstats} package insight ctags & gtags R, C++ ○␣ ○␣ ○␣ ○␣
[20] {globals} distributed env. AST visitor R ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○
[21] {Rclean} debug/refactor PDG traversal R ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○
[22] {lintr} linting XPath, visitor R ○ ○␣ ○␣ ○␣ ○␣ ○
[23] {SimilaR} plagiarism PDG, visitor R, C++ ○␣ ○␣ ○␣ ○
[24] {rco} optimization AST visitor R ○ ○ ○␣ ○
[25] {cyclocomp} code complexity AST visitor R ○␣ ○
[26] {flow} visualize, debug AST visitor R, C ○␣ ○ ○␣ ○␣ ○␣ ○␣
[27] {PaRe} code review Regex R ○␣ ○␣ ○␣
[28] {dfgraph} static analysis AST visitor R ○␣ ○␣ ○␣
[29] {rflowgraph} call graph AST visitor R ○␣ ○␣
[30] {languageserver} editor support XPath, visitor R, C ○ ○␣ ○␣ ○␣ ○
[31] RStudio editor support AST visitor Java, C++, TS, . . . ○ ○␣ ○␣ ○␣ ○
[7] ROSA optimization visitor C++, R ○ ○␣ ○␣ ○␣ ○ ○ ○␣

[32] Random abstract int. trace & visitor R ○␣ ○␣ ○␣ ○␣ ○␣ ○␣
[33] RaaS reproducibility AST visitor Python, R ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○
[34] GNU R execute R bytecode C, Fortran, R ○ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○
[35] FastR execute R AST visitor Java, C, R, . . . ○ ○␣ ○␣ ○␣ ○␣ ○
[36] Ř execute R SSA, bytecode C++, R, C, . . . ○ ○ ○ ○ ○␣ ○ ○␣ ○␣ ○ ○␣ ○
[37] renjin execute R SSA, CFG R, Java, C, . . . ○ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○ ○
[38] pqR execute R bytecode C, R, . . . ○ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○
[39] MRO execute R bytecode R, C, Fortran, . . . ○ ○␣ ○␣ ○␣
[40] RCC transpile C CFG, bytecode C/C++, Fortran, R, . . . ○ ○ ○␣ ○␣ ○␣ ○␣ ○

F. Sihler (Ulm University) flowR — Problems 15

https://cran.r-project.org/package=CodeDepends
https://cran.r-project.org/package=codetools
https://cran.r-project.org/package=checkglobals
https://github.com/nick-ulle/rstatic
https://github.com/duncantl/CodeAnalysis
https://github.com/duncantl/RTypeInference
https://cran.r-project.org/package=pkgstats
https://ctags.io
https://www.gnu.org/software/global/
https://cran.r-project.org/package=globals
https://cran.r-project.org/package=rclean
https://cran.r-project.org/package=lintr
https://cran.r-project.org/package=SimilaR
https://cran.r-project.org/package=rco
https://cran.r-project.org/package=cyclocomp
https://cran.r-project.org/package=flow
https://cran.r-project.org/package=PaRe
https://github.com/dkary/dfgraph
https://github.com/IBM/rflowgraph
https://cran.r-project.org/package=languageserver
https://posit.co/
https://github.com/UWQuickstep/rosa/tree/master
https://www.sci.unich.it/~amato/random/
https://github.com/jwons/raas
https://cran.r-project.org/
https://github.com/oracle/fastr
https://github.com/reactorlabs/rir
https://www.renjin.org
https://github.com/radfordneal/pqR
https://github.com/microsoft/microsoft-r-open
https://github.com/johngarvin/rcc

Performance Measurements

Dataflow Slicing

100

102

104

799 ms

12 ms

Ti
m

e
[m

s]

0

0.5

1 91.8 %

Av
g.

Re
du

ct
io

n
[%

]

• We generated every possible variable of interest
• Dataflow results can be cached

99th percentile

F. Sihler (Ulm University) flowR — Evaluation 16

Parse & Normalize

exprlist

expr

IF
if

(
(

expr

NUM_CONST
TRUE

)
)

expr

SYMBOL
x

ELSE
else

expr

SYMBOL
y

parse(text="if(TRUE) x else y")

RExpressionList

RIfThenElse
if(...) ... else ...

RLogical
TRUE

RSymbol
x

RSymbol
y

when then

else

normalized

• Normalizing constants, namespacing, operators, . . .
• We use the “R language definition”[5] as a basis

[5] R Core Team, R Language Definition (2023)

Parse Normalize Dataflow Slice Reconstruct

F. Sihler (Ulm University) flowR — Evaluation 17

https://cran.r-project.org/doc/manuals/r-release/R-lang.pdf

Dataflow

x 0 ← 21
y 0 ← 2
z 0 ← x 1 * y 1

exprlist

assignment
←

symbol
x

number
21

assignment
←

symbol
y

number
2

assignment
←

symbol
z

binary-op
*

symbol
x

symbol
y

1

target source

2

target source

3

target source

lhs rhs

Parse Normalize Dataflow Slice Reconstruct

F. Sihler (Ulm University) flowR — Evaluation 18.1

Dataflow

x 0 ← 21
y 0 ← 2
z 0 ← x 1 * y 1

exprlist

←

x0 21

←

y0 2

←

z0 *

x1 y1

1

target source

2

tar
ge

t source

3

target source

lhs rhs

Environment

Environment

Environment

x0
Graph

Environment

Environment

x ↦ x0x0
Graph

Environment

x ↦ x0

Environment

x ↦ x0

y0
Graph

Environment

x ↦ x0

y0
Graph Environment

x ↦ x0, y ↦ y0

Environment

x ↦ x0, y ↦ y0

Environment

x ↦ x0, y ↦ y0

z0
Graph

Environment

x ↦ x0, y ↦ y0

Environment

x ↦ x0, y ↦ y0 x1
Graph Environment

x ↦ x0, y ↦ y0y1
Graph

Environment

x ↦ x0, y ↦ y0
y1
x1

Graph

Environment

x ↦ x0, y ↦ y0,
z ↦ z0

y1
x1

z0
Graph

Environment

x ↦ x0, y ↦ y0,
z ↦ z0

y1
x1

z0 x0
y0

Graph

Parse Normalize Dataflow Slice Reconstruct

F. Sihler (Ulm University) flowR — Evaluation 18.2

Resulting Dataflow

a 0 ← 3
a 1 ← x 0 * m 0

if(m 1 > 3) {
a 2 ← 5

}

b 0 ← a 3 + c 0

∠

a0

a1 x0 m0def-by

def-by

m1

a2

b0 a3 c0def-by

def-by

read (may)

read (may)

Parse Normalize Dataflow Slice Reconstruct

F. Sihler (Ulm University) flowR — Evaluation 19

Slicing, I

a 0 ← 3
a 1 ← x 0 * m 0

if(m 1 > 3) {
a 2 ← 5

}

b0 ← a 3 + c 0

a0

a1 x0 m0def-by

def-by

m1

a2

b0 a3 c0def-by

def-by

read (may)

read (may)

Parse Normalize Dataflow Slice Reconstruct

F. Sihler (Ulm University) flowR — Evaluation 20

Slicing, II

{ }

←

a0 3

←

a1 *

x0 m0

if

>

m1 3

{ }

←

a2 5

←

b0 +

a3 c0

1

lhs rhs

2

lhs rhs

lhs rhs

3

cond

lhs rhs

then

1

lhs rhs

4

lhs rhs

lhs rhs

a

x m

x * m

a ← x * m

m

a

b

a c
m > 3

a ← 5

{ a ← 5 }

if(m > 3) { a ← 5 }

a + c

b ← a + c

a ← x * m
if(m > 3) { a ← 5 }
b ← a + c

Parse Normalize Dataflow Slice Reconstruct

F. Sihler (Ulm University) flowR — Evaluation 21

There Is More. . .

reads

callsdefined-by-on-call

defines-on-call

a0
b0

a1
b1

+
reads

reads

relates

relates

f0
defined-by

unnamed-arg

f1

argument

returns

f 0 ← function(a 0 , b 0 = 3) {
a 1 + b 1}

f 1 (39)

F. Sihler (Ulm University) flowR — Evaluation 22

Definition-Retrieval

paste(
"(*|descendant-or-self :: exprlist/*)[self :: FUNCTION or self :: OP-LAMBDA]/

following-sibling :: SYMBOL_FORMALS[text() = ’{token_quote}’ and @line1 <= {
row}]",

"(*|descendant-or-self :: exprlist/*)[LEFT_ASSIGN[preceding-sibling :: expr[count
(*)=1]/SYMBOL[text() = ’{token_quote}’ and @line1 <= {row}] and following-
sibling :: expr[@start > {start} or @end < {end}]]]",

"(*|descendant-or-self :: exprlist/*)[RIGHT_ASSIGN[following-sibling :: expr[count
(*)=1]/SYMBOL[text() = ’{token_quote}’ and @line1 <= {row}] and preceding-
sibling :: expr[@start > {start} or @end < {end}]]]",

"(*|descendant-or-self :: exprlist/*)[EQ_ASSIGN[preceding-sibling :: expr[count(*)=
1]/SYMBOL[text() = ’{token_quote}’ and @line1 <= {row}] and following-
sibling :: expr[@start > {start} or @end < {end}]]]",

"forcond/SYMBOL[text() = ’{token_quote}’ and @line1 <= {row}]",
sep = "|")

F. Sihler (Ulm University) flowR — Evaluation 23

References I

[1] Ana Trisovic et al. “A Large-Scale Study on Research Code Quality and Execution”. 2022
[2] The Comprehensive R Archive Network — cran.r-project.org. 2024
[3] Florian Sihler and Matthias Tichy. “Statically Analyzing the Dataflow of R Programs”. 2024
[4] Olivier Flückiger et al. “R melts brains: an IR for first-class environments and lazy effectful

arguments”. 2019
[5] R Core Team. R Language Definition. 2023
[6] Inese Drudze et al. Apple phenology data set and R script, related to publication "Full

flowering phenology of apple tree (Malus domestica) in Pūre orchard, Latvia from 1959 to
2019". June 2021

[7] Rathijit Sen et al. ROSA: R Optimizations with Static Analysis. 2017
[8] Florian Sihler. “Constructing a static program slicer for R programs”. 2023
[9] Mark Weiser. “Program Slicing”. July 1984
[10] Florian Sihler et al. “On the Anatomy of Real-World R Code for Static Analysis”. 2024

F. Sihler (Ulm University) flowR — Evaluation 24.1

https://www.nature.com/articles/s41597-022-01143-6
https://cran.r-project.org/doc/manuals/r-release/R-lang.pdf
https://doi.org/10.1145/3643991.3644911

References II
[11] Liang Ma et al. Predicting range shifts of pikas (Mammalia, Ochotonidae) in China under

scenarios incorporating land-use change, climate change, and dispersal limitations. Aug. 2021
[12] Joshua Robertson. Social hierarchy reveals thermoregulatory trade- offs in response to

repeated stressors. Oct. 2020
[13] Duncan Lang et al. CodeDepends. Analysis of R Code for Reproducible Research and Code

Comprehension. 2018
[14] Luke Tierney. codetools: Code Analysis Tools for R. 2023
[15] Joris Chau. checkglobals: Static Analysis of R-Code Dependencies. 2023
[16] Nick Ulle and Duncan Temple Lang. rstatic: Low-level Static Analysis Tools for R Code. 2019
[17] Duncan Lang et al. CodeAnalysis. Tools for static analysis of R code. 2023
[18] Nick Ulle and Duncan Temple Lang. RTypeInference: Infer Types of Inputs and Outputs for R

Expressions. 2021
[19] Mark Padgham. pkgstats. 2021
[20] Henrik Bengtsson. globals: Identify Global Objects in R Expressions. 2022

F. Sihler (Ulm University) flowR — Evaluation 25.2

https://doi.org/10.5281/zenodo.5268024
https://doi.org/10.5281/zenodo.5268024
https://doi.org/10.5061/dryad.rfj6q5774
https://doi.org/10.5061/dryad.rfj6q5774
https://CRAN.R-project.org/package=CodeDepends
https://CRAN.R-project.org/package=CodeDepends
https://CRAN.R-project.org/package=codetools
https://CRAN.R-project.org/package=checkglobals
https://github.com/duncantl/CodeAnalysis
https://github.com/ropensci-review-tools/pkgstats
https://CRAN.R-project.org/package=globals

References III
[21] Matthew Lau. Rclean: A Tool for Writing Cleaner, More Transparent Code. 2022
[22] Jim Hester et al. lintr: A ’Linter’ for R Code. 2023
[23] Maciej Bartoszuk and Marek Gagolewski. SimilaR: R Source Code Similarity Evaluation. 2020
[24] Juan Cruz Rodriguez. rco: The R Code Optimizer. 2021
[25] Gabor Csardi. cyclocomp: Cyclomatic Complexity of R Code. 2023
[26] Antoine Fabri. flow: View and Browse Code Using Flow Diagrams. 2023
[27] Maarten van Kessel. PaRe: A Way to Perform Code Review or QA on Other Packages. 2023
[28] Dan Kary. dfgraph: Visualize R Code with Data Flow Graphs.
[29] Evan Patterson. The algebra and machine representation of statistical models. 2020
[30] Randy Lai. languageserver: Language Server Protocol. 2023
[31] Posit team. RStudio: Integrated Development Environment for R. 2023
[32] Gianluca Amato and Francesca Scozzari. “Random: R-Based Analyzer for Numerical Domains”.

2012
[33] Joseph Wonsil et al. “Reproducibility as a Service”. 2023

F. Sihler (Ulm University) flowR — Evaluation 26.3

https://github.com/MKLau/Rclean
https://CRAN.R-project.org/package=lintr
https://CRAN.R-project.org/package=SimilaR
https://CRAN.R-project.org/package=rco
https://CRAN.R-project.org/package=cyclocomp
https://CRAN.R-project.org/package=flow
https://github.com/darwin-eu-dev/PaRe
https://github.com/dkary/dfgraph
https://CRAN.R-project.org/package=languageserver
http://www.posit.co/
https://api.semanticscholar.org/CorpusID:17945780
https://api.semanticscholar.org/CorpusID:17945780
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3202

References IV

[34] R Core Team. R: A Language and Environment for Statistical Computing. 2023

[35] Tomas Kalibera et al. “A fast abstract syntax tree interpreter for R”. 2014

[36] Olivier Flückiger et al. “Sampling optimized code for type feedback”. 2020

[37] Alexander Bertram. “Renjin: A new r interpreter built on the jvm”. 2013

[38] Radford M Neal. “Speed Improvements in pqR: Current Status and Future Plans”. 2014

[39] Microsoft R Open Source. 2019

[40] John Garvin. RCC: A compiler for the R language for statistical computing. 2004

F. Sihler (Ulm University) flowR — Evaluation 27.4

https://www.R-project.org/
https://glizen.com/radfordneal/ftp/pqR-dsc.pdf

	Introduction
	Motivation
	The Goal of flowR
	Using flowR
	Overview
	Appendix
	Detailed Slides
	Smells and Problems
	Evaluation
	Program Slicer
	Parse & Normalize
	Dataflow
	Slicing
	Reconstruct

