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Introduction Motivation

Motivation

In Data Analysis Workflows (DAWs), operations on data are usually
implemented

as “handwritten” code

in languages like Python, R and C/C++

and usually reuse specialised libraries.

But trustworthiness of the DAW results depends on the correct implementation

of the code

and the libraries.
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Introduction Motivation

A Motivating Example (1)

A DAW analysies remote sensing data in astrophysics

the data is used for computing the material composition of a planet

each element is represented by an integral number (0-255)

the “visible” side of the planet is represented as matrix of integral numbers

the workflow includes visualisation of found elements by distinct colours

the composition is visualised as a matrix of RGB values
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Introduction Motivation

A Motivating Example (2)

To visualise the found elements in a publication or internal documents,

the matrix of integers is transformed into a matrix of RGB values

by applying a function int id_to_rgb(int e) on each element

and then storing the result as a bitmap

If id_to_rgb is not correctly implemented, results can be misinterpreted.
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Introduction Correctness of Software

What is Correctness?

An algorithm is correct, if it satisfies a given specification that usually defines

input and output types

input and output constraints (e.g. restrictions on values)

the (mathematical) function computed with inputs

For example, if

e is a non-negative integer smaller than 256

id_to_rgb(e) must be non-negative, too.
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Introduction Correctness of Software

How to Ensure Correctness?

Approaches can be

1 Using Assertions (in code)

2 Testing (unit-tests)

3 Model Checking

4 Formal Verification in Proof Assistants

5 Correct-by-Construction Synthesis
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Introduction Correctness of Software

How to Ensure Correctness?

Approaches can be

1 Using Assertions (in code)

2 Testing (unit-tests)

3 Model Checking

4 Formal Verification in Proof Assistants

5 Correct-by-Construction Synthesis

However,

1-2 show only the absence of specific errors

and only 3-5 can guarantee correctness.
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From Spec to Code Verification and Synthesis

Proof Assistants

Proof Assistants can be used to

1 define and verify mathematical propositions and laws

2 encode scientific theories (like climate models)

3 define and verify properties of algorithms

And the most prominent are

Rocq [1] (aka Coq)

Isabelle/HOL [2]

Lean [3]
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From Spec to Code Verification and Synthesis

Synthesis and Extraction

Some Proof Assistants are capable of

1 constructing a functional model from a proof (synthesis)

2 extracting compilable/runnable code from a functional model

In the best case, extraction is verified as for

Isabelle/HOL (extraction to CakeML [4])

Rocq (many target languages)
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From Spec to Code Code Extraction in Rocq

Code Extraction in Rocq (1)

Rocq supports extraction to source code with the

1 Coq Extraction Plugin (CEP) [5]: OCaml, Haskell, Scheme

2 OCaml Extraction Plugin (OEP) [6]: OCaml

3 CertiCoq [8]: Clight [7]

4 and more (WebAssembly, Rust)

And to wrap up in a graphic
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From Spec to Code Code Extraction in Rocq

Code Extraction in Rocq (2)

Rocq Formalisation
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From Spec to Code Code Extraction in Rocq

Restrictions of Extraction

Usually, the extracted code does not contain

a “main” function - since it is not pure

declarations for Foreign Function Interfaces (FFIs)

So these have to be defined manually.
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Reuse in DAWs Reuse Options

Reuse Options

Generally, there are two ways of reusing extracted code in a DAW

1 as a standalone DAW step (tool)
Requires CLI skeleton
Requires data input/output functionality

2 as a part of a DAW step (integration)
homogenous (same programming language)
heterogenous (e.g. OCaml in C++)

→ Tool extraction and homogenous integration are rather straight-forward
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Reuse in DAWs Reuse Options

Why Heterogenous Integration?

OCaml (and Haskell) have advantages

data structures can exceed usual limitations (e.g. 64 bit integers)
→ higher computation precision possible

purely functional algorithms are SIMD
→ can be parallelised easily (e.g. OCaml 5)

functional languages are strongly type safe
→ less error-prone compared to Python, for example

both can be compiled to object code
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Reuse in DAWs Heterogenous Integration with FFIs

Heterogenous Integration with FFIs

OCaml has FFIs to C/C++ [10], but

C-callable OCaml functions have to be exposed as callbacks

OCaml-callable C functions have to be defined as externals

a type conversion has to be done

Usually, all this is done manually!
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Reuse in DAWs Heterogenous Integration with FFIs

More Technical

When having

a C function int my_fun (int a, int b) and

an extracted OCaml function my_ocaml_fun : int -> int -> int,

we have to manually define the

1 external declaration in OCaml
external my_fun : int -> int -> int

2 callback declaration in OCaml
let _ = Callback.register "my_callback" my_ocaml_fun

3 implementation of my_fun and call to my_callback in C.
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Reuse in DAWs Heterogenous Integration with FFIs

The Problem

Changes on the formalisation may require updating externals/callbacks!

Otherwise, runtime errors may occur when

calling C externals (typing errors)

calling non-existing callbacks (if OCaml side name changes)
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Reuse in DAWs Heterogenous Integration with FFIs

The Solution

In Rocq,

the target OCaml type after extraction is defined
→ So the typing of the external definition is already available

the names of potential callbacks are present
→ So the callback registration info is already available

Thus, we extended [12] the CEP with commands [13]

Extract Foreign Constant qualid that generate a OCaml-side type
save externals declaration for the qualid function

Extract Callback qualid to automatically generate a callback
registration for the qualid function
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Reuse in DAWs Heterogenous Integration with FFIs

Extraction Comparison

Rocq
Extraction

extracted.ml✓
c externals.ml

callbacks.ml

extracted.ml✓

ocamlopt
wrapper.c

main.c

Binary

old
new
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Wrap-Up Current State and Limitations

The Current State

The changes in the extraction plugin of Rocq

increase type safety when integrating extracted code into C/C++ programs

make exposing foreign functions between C/C++ and OCaml easier

and can in principle also be used by the verified OCaml extraction
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Wrap-Up Current State and Limitations

The Limitations

But there are open topics:

the extensions support only FFIs to C/C++ but not Python
→ potential future work by leveraging pyml [11].

the C side type conversions cannot be extracted by the CEP
→ potential future work as separate Rocq plugin

the C side calls to OCaml have to be implemented manually
→ potential future work as separate Rocq plugin
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Wrap-Up Current State and Limitations

In that sense:

Better Software → Better Research
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Wrap-Up Current State and Limitations
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