
On Embedding Code Extracted From Coq Formalisations
into DAWs

deRSE25

Mario Frank

University of Potsdam
Institute of Computer Science

Karlsruhe, 26 Feb 2025



Outline

1 Introduction
Motivation
Correctness of Software

2 From Spec to Code
Verification and Synthesis
Code Extraction in Rocq

3 Reuse in DAWs
Reuse Options
Heterogenous Integration with FFIs

4 Wrap-Up

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 2 von 25



Introduction Motivation

Motivation

In Data Analysis Workflows (DAWs), operations on data are usually
implemented

as “handwritten” code

in languages like Python, R and C/C++

and usually reuse specialised libraries.

But trustworthiness of the DAW results depends on the correct implementation

of the code

and the libraries.

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 3 von 25



Introduction Motivation

A Motivating Example (1)

A DAW analysies remote sensing data in astrophysics

the data is used for computing the material composition of a planet

each element is represented by an integral number (0-255)

the “visible” side of the planet is represented as matrix of integral numbers

the workflow includes visualisation of found elements by distinct colours

the composition is visualised as a matrix of RGB values

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 4 von 25



Introduction Motivation

A Motivating Example (1)

A DAW analysies remote sensing data in astrophysics

the data is used for computing the material composition of a planet

each element is represented by an integral number (0-255)

the “visible” side of the planet is represented as matrix of integral numbers

the workflow includes visualisation of found elements by distinct colours

the composition is visualised as a matrix of RGB values

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 4 von 25



Introduction Motivation

A Motivating Example (1)

A DAW analysies remote sensing data in astrophysics

the data is used for computing the material composition of a planet

each element is represented by an integral number (0-255)

the “visible” side of the planet is represented as matrix of integral numbers

the workflow includes visualisation of found elements by distinct colours

the composition is visualised as a matrix of RGB values

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 4 von 25



Introduction Motivation

A Motivating Example (1)

A DAW analysies remote sensing data in astrophysics

the data is used for computing the material composition of a planet

each element is represented by an integral number (0-255)

the “visible” side of the planet is represented as matrix of integral numbers

the workflow includes visualisation of found elements by distinct colours

the composition is visualised as a matrix of RGB values

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 4 von 25



Introduction Motivation

A Motivating Example (1)

A DAW analysies remote sensing data in astrophysics

the data is used for computing the material composition of a planet

each element is represented by an integral number (0-255)

the “visible” side of the planet is represented as matrix of integral numbers

the workflow includes visualisation of found elements by distinct colours

the composition is visualised as a matrix of RGB values

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 4 von 25



Introduction Motivation

A Motivating Example (2)

To visualise the found elements in a publication or internal documents,

the matrix of integers is transformed into a matrix of RGB values

by applying a function int id_to_rgb(int e) on each element

and then storing the result as a bitmap

If id_to_rgb is not correctly implemented, results can be misinterpreted.

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 5 von 25



Introduction Correctness of Software

What is Correctness?

An algorithm is correct, if it satisfies a given specification that usually defines

input and output types

input and output constraints (e.g. restrictions on values)

the (mathematical) function computed with inputs

For example, if

e is a non-negative integer smaller than 256

id_to_rgb(e) must be non-negative, too.

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 6 von 25



Introduction Correctness of Software

How to Ensure Correctness?

Approaches can be

1 Using Assertions (in code)

2 Testing (unit-tests)

3 Model Checking

4 Formal Verification in Proof Assistants

5 Correct-by-Construction Synthesis

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 7 von 25



Introduction Correctness of Software

How to Ensure Correctness?

Approaches can be

1 Using Assertions (in code)

2 Testing (unit-tests)

3 Model Checking

4 Formal Verification in Proof Assistants

5 Correct-by-Construction Synthesis

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 7 von 25



Introduction Correctness of Software

How to Ensure Correctness?

Approaches can be

1 Using Assertions (in code)

2 Testing (unit-tests)

3 Model Checking

4 Formal Verification in Proof Assistants

5 Correct-by-Construction Synthesis

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 7 von 25



Introduction Correctness of Software

How to Ensure Correctness?

Approaches can be

1 Using Assertions (in code)

2 Testing (unit-tests)

3 Model Checking

4 Formal Verification in Proof Assistants

5 Correct-by-Construction Synthesis

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 7 von 25



Introduction Correctness of Software

How to Ensure Correctness?

Approaches can be

1 Using Assertions (in code)

2 Testing (unit-tests)

3 Model Checking

4 Formal Verification in Proof Assistants

5 Correct-by-Construction Synthesis

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 7 von 25



Introduction Correctness of Software

How to Ensure Correctness?

Approaches can be

1 Using Assertions (in code)

2 Testing (unit-tests)

3 Model Checking

4 Formal Verification in Proof Assistants

5 Correct-by-Construction Synthesis

However,

1-2 show only the absence of specific errors

and only 3-5 can guarantee correctness.

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 8 von 25



From Spec to Code Verification and Synthesis

Proof Assistants

Proof Assistants can be used to

1 define and verify mathematical propositions and laws

2 encode scientific theories (like climate models)

3 define and verify properties of algorithms

And the most prominent are

Rocq [1] (aka Coq)

Isabelle/HOL [2]

Lean [3]

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 9 von 25



From Spec to Code Verification and Synthesis

Synthesis and Extraction

Some Proof Assistants are capable of

1 constructing a functional model from a proof (synthesis)

2 extracting compilable/runnable code from a functional model

In the best case, extraction is verified as for

Isabelle/HOL (extraction to CakeML [4])

Rocq (many target languages)

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 10 von 25



From Spec to Code Code Extraction in Rocq

Code Extraction in Rocq (1)

Rocq supports extraction to source code with the

1 Coq Extraction Plugin (CEP) [5]: OCaml, Haskell, Scheme

2 OCaml Extraction Plugin (OEP) [6]: OCaml

3 CertiCoq [8]: Clight [7]

4 and more (WebAssembly, Rust)

And to wrap up in a graphic

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 11 von 25



From Spec to Code Code Extraction in Rocq

Code Extraction in Rocq (2)

Rocq Formalisation

OCamlCLight Haskell

Ce
rtiC

oq

OEP CEP
CEP

Object Object Object

ccomp gcc

o
ca
m
lo
p
t,g

cc

g
h
c

Ce
rtiC

oq

OEP CEP
CEP

verified

unverified

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 12 von 25



From Spec to Code Code Extraction in Rocq

Restrictions of Extraction

Usually, the extracted code does not contain

a “main” function - since it is not pure

declarations for Foreign Function Interfaces (FFIs)

So these have to be defined manually.

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 13 von 25



Reuse in DAWs Reuse Options

Reuse Options

Generally, there are two ways of reusing extracted code in a DAW

1 as a standalone DAW step (tool)
Requires CLI skeleton
Requires data input/output functionality

2 as a part of a DAW step (integration)
homogenous (same programming language)
heterogenous (e.g. OCaml in C++)

→ Tool extraction and homogenous integration are rather straight-forward

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 14 von 25



Reuse in DAWs Reuse Options

Why Heterogenous Integration?

OCaml (and Haskell) have advantages

data structures can exceed usual limitations (e.g. 64 bit integers)
→ higher computation precision possible

purely functional algorithms are SIMD
→ can be parallelised easily (e.g. OCaml 5)

functional languages are strongly type safe
→ less error-prone compared to Python, for example

both can be compiled to object code

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 15 von 25



Reuse in DAWs Heterogenous Integration with FFIs

Heterogenous Integration with FFIs

OCaml has FFIs to C/C++ [10], but

C-callable OCaml functions have to be exposed as callbacks

OCaml-callable C functions have to be defined as externals

a type conversion has to be done

Usually, all this is done manually!

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 16 von 25



Reuse in DAWs Heterogenous Integration with FFIs

More Technical

When having

a C function int my_fun (int a, int b) and

an extracted OCaml function my_ocaml_fun : int -> int -> int,

we have to manually define the

1 external declaration in OCaml
external my_fun : int -> int -> int

2 callback declaration in OCaml
let _ = Callback.register "my_callback" my_ocaml_fun

3 implementation of my_fun and call to my_callback in C.

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 17 von 25



Reuse in DAWs Heterogenous Integration with FFIs

The Problem

Changes on the formalisation may require updating externals/callbacks!

Otherwise, runtime errors may occur when

calling C externals (typing errors)

calling non-existing callbacks (if OCaml side name changes)

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 18 von 25



Reuse in DAWs Heterogenous Integration with FFIs

The Solution

In Rocq,

the target OCaml type after extraction is defined
→ So the typing of the external definition is already available

the names of potential callbacks are present
→ So the callback registration info is already available

Thus, we extended [12] the CEP with commands [13]

Extract Foreign Constant qualid that generate a OCaml-side type
save externals declaration for the qualid function

Extract Callback qualid to automatically generate a callback
registration for the qualid function

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 19 von 25



Reuse in DAWs Heterogenous Integration with FFIs

Extraction Comparison

Rocq
Extraction

extracted.ml✓
c externals.ml

callbacks.ml

extracted.ml✓

ocamlopt
wrapper.c

main.c

Binary

old
new

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 20 von 25



Wrap-Up Current State and Limitations

The Current State

The changes in the extraction plugin of Rocq

increase type safety when integrating extracted code into C/C++ programs

make exposing foreign functions between C/C++ and OCaml easier

and can in principle also be used by the verified OCaml extraction

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 21 von 25



Wrap-Up Current State and Limitations

The Limitations

But there are open topics:

the extensions support only FFIs to C/C++ but not Python
→ potential future work by leveraging pyml [11].

the C side type conversions cannot be extracted by the CEP
→ potential future work as separate Rocq plugin

the C side calls to OCaml have to be implemented manually
→ potential future work as separate Rocq plugin

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 22 von 25



Wrap-Up Current State and Limitations

In that sense:

Better Software → Better Research

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 23 von 25



Wrap-Up Current State and Limitations

References
1 Y. Bertot & P. Castéran (2004): “Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive

Constructions”. https://doi.org/10.1007/978-3-662-07964-5.

2 T. Nipkow, L. C. Paulson & M. Wenzel (2002): “Isabelle/HOL - A Proof Assistant for Higher-Order Logic”. Lecture Notes in Computer
Science, Springer Berlin, Heidelberg. https://doi.org/10.1007/3-540-45949-9.

3 The Lean team (2025): “Programming Language and Theorem Prover”. https://lean-lang.org/

4 L. Hupel & T. Nipkow (2018): “A Verified Compiler from Isabelle/HOL to CakeML”. In Amal Ahmed, editor: European Symposium on
Programming (ESOP), Lecture Notes in Computer Science 10801, Springer, pp. 999–1026.
https://doi.org/10.1007/978-3-319-89884-1_35.

5 P. Letouzey (2003): “A New Extraction for Coq”, In Herma Geuvers & Freek Wiedijk, editors: Types for Proofs and Programs, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 200–219, https://doi.org/10.1007/3-540-39185-1_12.

6 Y. Forster, M. Sozeau & N. Tabareau (2023): “Verified Extraction from Coq to OCaml”,
https://inria.hal.science/hal-04329663

7 S. Blazy & X. Leroy (2009): “Mechanized Semantics for the Clight Subset of the C Language”, Journal of Automated Reasoning 43(3),
pp. 263–288, https://doi.org/10.1007/s10817-009-9148-3.

8 A. Anand et al. (2017): “CertiCoq : A verified compiler for Coq”, In CoqPL’17: The Third International Workshop on Coq for
Programming Languages.

9 The Rocq developers (2024): “Program extraction”,
https://coq.inria.fr/doc/v8.20/refman/addendum/extraction.html.

10 INRIA (2025): “Interfacing C with OCaml”, https://ocaml.org/manual/5.3/intfc.html

11 The pyml developers (2023): ”OCaml bindings for Python“, urlhttps://github.com/ocamllibs/pyml.

12 M. Frank (2024): ”Extend the Extraction Plugin to synthesise OCaml external and callback definitions for interfacing C/C++“.
https://github.com/coq/coq/pull/18270/.

13 INRIA (2024): https://coq.inria.fr/doc/v8.20/refman/addendum/extraction.html

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 24 von 25

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/3-540-45949-9
https://lean-lang.org/
https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.1007/3-540-39185-1_12
https://inria.hal.science/hal-04329663
https://doi.org/10.1007/s10817-009-9148-3
https://coq.inria.fr/doc/v8.20/refman/addendum/extraction.html
https://ocaml.org/manual/5.3/intfc.html
https://github.com/coq/coq/pull/ 18270/
https://coq.inria.fr/doc/v8.20/refman/addendum/extraction.html


Wrap-Up Current State and Limitations

Acknowledgements

This work was partially supported by the German Federal Ministry of Education
and Research (BMBF) through the VerSeCloud research project under the
grant number 16KIS1358

Mario Frank On Embedding Code Extracted From Coq Formalisations into DAWs Folie 25 von 25


	Introduction
	Motivation
	Correctness of Software

	From Spec to Code
	Verification and Synthesis
	Code Extraction in Rocq

	Reuse in DAWs
	Reuse Options
	Heterogenous Integration with FFIs

	Wrap-Up
	Current State and Limitations


