
de-RSE 2025

1

MLentory
A Machine Learning model 
registry with natural 
language queries

Nelson Quiñones
Dietrich Rebholz-Schuhmann
Leyla Jael Castro



Lost in a sea of ML models and 
resources?

2



Table of content

What is 
MLentory?

How does MLentory work? How are we building 
MLentory?

● The problem

● Introduction to MLentory

● What are we doing 
differently

● Architecture Overview

● Docker

● ETL pipeline

● Backend

● LLMs

● Frontend

● Development Framework

● Version Control

● Code Quality

● Documentation

● Demo

● Lessons Learned

● Next steps

3



Introducing MLentory
4

● MLentory is one of the projects of NFDI4DS.

● MLentory gathers ML model information from diverse platforms, 
harmonizes this data into a common and standardized format and shares 
this information in a FAIR Digital Object (FDO) registry.

~ 



5

What are we doing differently?

● Collecting resources from different sources.

● Curating a schema for ML models called FAIR4ML.

● Enabling natural text queries to search for resources.

● Keeping track of the history of the metadata.



How does MLentory 
work?

6



Overview

7



Overview - Docker

8

● Rapid Prototyping and 
Experimentation

● Reproducibility and 
Collaboration

● Simplified Deployment 
and Scalability



ETL Pipeline

● The Extractor, 
Transform and Load 
components are 
Python packages 
made for each 
platform.

● The scheduler is a 
Python script that uses 
Apache Airflow to 
trigger events.

9



Backend

● A Virtuoso database to keep the 
newest version of the metadata in 
RDF format. 

● A PostgreSQL database to keep the 
history of all the extracted metadata.

● An Elasticsearch and Qdrant 
components to index data from the 
Databases.

● An Ollama instance to empower 
natural language interactions with 
the MLentory resources.

● An API written with FastAPI to serve 
all MLentory’s services.

10



LLMs: Searching

11

1. Receive a query.

2. Identify key elements and 
expand on them.

3. Use the new query to 
extract information.

4. Generate questions for 
the user.

5. Recommend filters to the 
user.

6. Serve collected data.

1 … 



LLMs: Chatting

12

1. Receive a question.

2. Gather all possible 
relevant resources.

3. Generate embeddings.

4. Compare resources and 
target question.

5. Select a subset.

6. Compose the query.

7. Get a response



User interface

● A Web Interface built 
using Nuxt3.js

● An API endpoint serving 
the latest version of the 
graph in a .ttl file

13



How are we building 
MLentory?

14



Development framework

15



Development framework

16



Version Control 17



Code Quality

18

~



Documentation

Inline Code Documentation README.md in relevant folders TDD with the big picture.

19



Demo

20



Lessons Learned: 21

● You wont need it

● KISS

● Create an MVP



Next steps 22

● Make the chat affect GUI elements.

● Improve our unstructured text extraction:

○ Test more LLMs.

○ Improve context selection.

○ Explore better prompts.

● Add more resources and platforms.

● Deploying LLMs in production.

● Share our tool and get more feedback!



Thanks for listening! 


