

University of Stuttgart

Institute for Parallel and Distributed Systems

Data Model Creation with MetaConfigurator

Felix Neubauer

The Team

"Have you ever struggled with data interoperability?"

Content

- Data Models (what is it and why does it matter?)
- The Problem
- The Solution
- Live Demo
- Conclusion

What is a Data Model?

A data model defines the structure and constraints of data

<pre></pre>	
1 - { 2 "name": "Alex", ⊠ 3 "age": -10 4 }	
1 - { 2 "name": "Alex", 3 "age": 10 4 }	

```
1 - {
 2
      "$schema": "http://json-schema.org/
 3
      "type": "object",
 4 -
      "properties": {
 5 -
        "name": {
 6
          "type": "string"
 7
        },
 8
        "age": {
 9
          "type": "integer",
          "minimum": 0
10
11
        }
12
      },
13-
      "required": [
14
        "name",
        "age"
15
16
      ]
17 }
```

Why Data Models Matter

WITHOUT A DATA MODEL

- Inconsistent structures
- Data duplication
- Hard to validate
- Manual effort needed

WITH A DATA MODEL

- Defined structure
- Interoperability
- Automatic validation
- Easier analysis and automation

→ No FAIR¹ness

 \rightarrow Enables FAIR¹ness

¹: Findable, Accessible, Interoperable and Re-Usable [1]

[1]: WILKINSON, Mark D., et al. The FAIR Guiding Principles for scientific data management and stewardship. *Scientific data*, 2016, 3. Jg., Nr. 1, S. 1-9.

University of Stuttgart

Challenges in Creating Data Models

High technical barrier (e.g., JSON Schema syntax)

Lack of easy-to-use tools

Fragmentation between different teams and organizations

Introducing MetaConfigurator

MetaConfigurator [2] is an open-source tool for creating and editing data models (schemas) and data for JSON/YAML.

[2]: NEUBAUER, Felix, et al. MetaConfigurator: A User-Friendly Tool for Editing Structured Data Files. *Datenbank-Spektrum*, 2024, S. 1-9.

University of Stuttgart

LIVE DEMO

www.metaconfigurator.org

- With a dataset² from Chemistry: Metal Organic Framework (MOF) synthesis
- They put chemicals together in certain conditions to produce new chemical
- Goal: reach certain characteristics in produced chemical
- Big dataset in Excel

²: Dataset provided by Esengül Çiftçi, Max Planck Institute for Solid State Research

What to do with our new Data Model?

- Formal specification of our desired data structure
- Can be communicated or published
- Automatic validation
- Code generation
- Script that processes the data
 - Enriching the compound entries with chemical information from PubChem
 - Learning algorithm to optimize the synthesis

Example 2: preCICE Adapter Configurator

≡	Data Editor 🔹 🗅 🗁 🐇 🗏 🖱 C' 🛛 📣 🥼	Search for data	a or properties × & preCl	CE Adapter Configurat	or 🚯 🗖
1	{	json 🗸	GUI Schema: preCICE Adapter and To	oling Configuration Sch	ema
3	"precice_config_file_name": "/precice-confi	g.xml",	(prexitos)		
4 - 5 -	"interfaces": L {		document root		
6	<pre>"mesh_name": "Fluid-Mesh", "natches": [</pre>		Property ↑↓		
8	"inlet",		participant_name* : string	Fluid	V
9	_ "outlet"		precice_config_file_name* : string	/precice-config.xml	
10	J, "location": "faceCenters",		✓ interfaces* : array		
12 -	"write_data_names": [V Item 1 : object		×
13	"Velocity",		mesh_name* : string	Fluid-Mesh	\sim
14	l l l		> patches : array	inlet, outlet	2 items 🗙
16 -	"read_data_names": [location : string	faceCenters	~ X
17	"Force",		> write_data_names : array	Velocity, Pressure	2 items 🗙
19],		> read_data_names : array	Force, Temperature	2 items 🗙

Future Directions

- Generating JSON Schema from an Ontology
- Generation of source code from schemas (e.g. Python API)
- Al integration
- Large scale user study
- More documentation, tutorials

• Feedback & Early Adopters are very welcome!

Takeaways

- Data models enable interoperability, validation and integration of data across domains and teams → making data more FAIR
- MetaConfigurator supports in creation and maintenance of data models

https://github.com/MetaConfigurator/meta-configurator/

University of Stuttgart

University of Stuttgart Institute for Parallel and Distributed Systems

Thank you!

Felix Neubauer

e-mail felix.neubauer@ipvs.uni-stuttgart.de www.logende.org

University of Stuttgart Institute for Parallel and Distributed Systems Universitätsstraße 38, 70569 Stuttgart,

https://github.com/MetaConfigurator/ meta-configurator/

Backup Data Formats

"SelfDrivingVehicle": { "StartingLocation": { [], "Destination": { [], "PlanningAlgorithm": "Dijkstra", "VehicleType": "Level 3", "PassengerCapacity": 5, "MaxSpeed": 180, "is4-Wheel-Drive": false, "Sensors": [}, "Environment": { "Weather": "rainy", "Temperature": 15.5, "Humidity": 27 }, "Vehicles": { [] }, "PedestrianGroups": [[], "Waypoints": { [], "SimulationSettings": { "Duration": 260, "TimeUnit": "seconds" JSON

SelfDrivingVehicle: StartingLocation: Destination: PlanningAlgorithm: Dijkstra VehicleType: Level 3 PassengerCapacity: 5 MaxSpeed: 180 is4-Wheel-Drive: false Sensors: Environment: Weather: rainy Temperature: 15.5 Humidity: 27 Vehicles: PedestrianGroups: Waypoints: SimulationSettings: Duration: 260 TimeUnit: seconds YAML

<pre><?xml version="1.0" encoding="UTF-8" ?></pre>
<root></root>
<pre><simulationname>Sim_Advanced04</simulationname></pre>
<selfdrivingvehicle></selfdrivingvehicle>
<startinglocation></startinglocation>
<destination></destination>
<planningalgorithm>Dijkstra</planningalgorithm>
<vehicletype>Level 3</vehicletype>
<passengercapacity>5</passengercapacity>
<maxspeed>180</maxspeed>
<is4-wheel-drive>false</is4-wheel-drive>
<sensors></sensors>
<environment></environment>
<weather>rainy</weather>
<temperature>15.5</temperature>
<humidity>27</humidity>
<vehicles></vehicles>
<pedestriangroups></pedestriangroups>
<waypoints></waypoints>
<simulationsettings></simulationsettings>
<duration>260</duration>
<timeunit>seconds</timeunit>
XML

Backup Data Models (= Schemas)

- A schema defines...
 - the structure to which data needs to adhere to
 - constraints, conditions, etc.
 - metadata (e.g., attribute descriptions)
- It enables...
 - data validation
 - communication of data models
 - common tooling

```
"Environment": {
  "type": "object",
  "properties": {
    "Weather": {
      "type": "string",
      "description": "Current weather conditions",
      "enum": [
        "sunny",
        "rainy",
        "cloudy"
    "Temperature": {
      "type": "number",
      "description": "Current temperature in Celsius."
    },
    "Humidity": {
      "type": "integer",
      "description": "Relative humidity as a percentage.",
      "minimum": 0,
      "maximum": 100
  },
```

Backup Schema Language Comparison

Schema language	# Search results	IDE support	# Node packages	Expressiveness
JSON schema	245,000	8 / 10	4,536	9 /9
XSD	151,000	8 / 10	116	8/9
DTD	69,700	9 / 10	34	6/9
CUE	10,500	4 / 10	97	8/9
Avro	20,000	8 / 10	211	5/9
JSON Type Definition (JTD)	109	0 / 10	17	5/9
TypeSchema	8,450	0 / 10	5	8/9
Protobuf	44,800	9 / 10	1,210	4/9
GraphQl schema	31,000	7 / 10	1,509	6/9

TABLE I Evaluation of different schema languages

TABLE II

COMPARISON OF EXPRESSIVENESS OF DIFFERENT SCHEMA LANGUAGES

Schema language	Simple types	Complex types	Descriptions	Example values	Default values	Optional values	Constraints	Conditions	References	Result
JSON schema	~	✓	✓	✓	1	✓	✓	✓	~	9/9
XSD	\checkmark	\checkmark	\checkmark	х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	8/9
DTD	\checkmark	\checkmark	х	х	\checkmark	\checkmark	х	\checkmark	\checkmark	6/9
CUE	\checkmark	\checkmark	\checkmark	\checkmark	х	\checkmark	\checkmark	\checkmark	\checkmark	8/9
Avro	\checkmark	\checkmark	x	x	\checkmark	\checkmark	x	х	\checkmark	5/9
JTD	\checkmark	\checkmark	х	х	х	\checkmark	х	\checkmark	\checkmark	5/9
TypeSchema	\checkmark	\checkmark	\checkmark	х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	8/9
protobuf	\checkmark	\checkmark	х	х	х	\checkmark	х	х	\checkmark	4/9
GraphQL schema	\checkmark	~	\checkmark	х	\checkmark	\checkmark	X	х	✓	6/9

Backup MetaConfigurator – Original Paper

MetaConfigurator: A User-Friendly Tool for Editing Structured Data Files

Felix Neubauer¹ · Paul Bredl¹ · Minye Xu¹ · Keyuriben Patel¹ · Jürgen Pleiss² · Benjamin Uekermann¹

Received: 31 January 2024 / Accepted: 26 April 2024 / Published online: 30 May 2024 © The Author(s) 2024

Abstract

Textual formats to structure data, such as JSON, XML, and YAML, are widely used for structuring data in various domains, from configuration files to research data. However, manually editing data in these formats can be complex and time-consuming. Graphical user interfaces (GUIs) can significantly reduce manual efforts and assist the user in editing the files, but developing a file-format-specific GUI requires substantial development and maintenance efforts. To address this challenge, we introduce *MetaConfigurator*: an open-source web application that generates its GUI depending on a given schema. Our approach differs from other schema-to-UI approaches in three key ways: 1) It offers a unified view that combines the benefits of both GUIs and text editors, 2) it enables schema editing within the same tool, and 3) it supports advanced schema features, including conditions and constraints. In this paper, we discuss the design and implementation of *MetaConfigurator*, backed by insights from a small-scale qualitative user study. The results indicate the effectiveness of our approach in retrieving information from data and schemas and in editing them.

Keywords Rdm · Json · Yaml · Schema · Editor · Configuration · Data · Research data management · Tool · Gui

Backup Related Work

• JSON Schema related research: schema inference [3, 4], validation [5], witness generation [6], schema matching [7], etc.

[3]: Čontoš, Pavel; Svoboda, Martin: JSON schema inference approaches. In: International Conference on Conceptual Modeling. Springer, pp. 173–183, 2020.

[4]: Baazizi, Mohamed-Amine; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo: Parametric schema inference for massive JSON datasets. The VLDB Journal, 28:497–521, 2019.

[5]: Attouche, Lyes; Baazizi, Mohamed-Amine; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo; Scherzinger, Stefanie: Validation of modern JSON schema: Formalization and complexity. Proceedings of the ACM on Programming Languages, 8(POPL):1451–1481, 2024.

[6]: Attouche, Lyes; Baazizi, Mohamed-Amine; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo; Scherzinger, Stefanie: Witness generation for JSON Schema. arXiv preprint arXiv:2202.12849, 2022.

[7]: Waghray, Kunal: JSON schema matching: Empirical observations. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. pp. 2887–2889, 2020.

University of Stuttgart

Backup Related Work

 Schema Editors: there exist different tools, such as JSON Editor Online², Adamant [8], or paid software, however less user-supporting features, such as tooltips or auto-completion or less JSON schema features supported

³: https://jsoneditoronline.org, accessed 2025/01/20.

[8]: Siffa, Ihda Chaerony; Schäfer, Jan; Becker, Markus M: Adamant: a JSON schema-based metadata editor for research data management workflows. F1000Research, 11, 2022.

Backup Feature: CSV Import

A		c	D	2	F	G	н	I. I.
Vialno	Date	Ligand type	Ligand mass	Ligand mass unit	Metal salt type	Metal salt mass	Metal salt mass unit	Solvent
ESN-1	03/01/22	Benzenedicarboxylic acid	66	mg	FeCI3	65	mg	4 mi DWF
ESN-2	03/01/22	Benzenedicarboxylic acid	66	mg	FeCI3	65	mg	4 mi DMF
ESN-3	03/01/22	Beruenedicarboxylic acid	66	mg	FeCI3	65	mg	4 miDWF
ESN-4	03/01/22	Benzenedicarboxylic acid	66	mg	FeCI3	65	mg	4 mi DWF+0,1 mi water
ESN-5	03/01/22	Benzenedicarboxylic acid	66	mg	FeCI3	65	mg	4 ml DWF+0,1 ml water
ESN-6	03/01/22	Bernenedicarboxylic acid	66	mg	FeCI3	65	mg	4 mi DWF+0,1 mi water
ESN-7	03/01/22	Beruenedicarboxylic acid	66	mg	FeCI3	65	mg	4 mi DWF+0,1 mi Hac
ESN-8	03/01/22	Benzenedicarboxylic acid	66	mg	FeCI3	65	mg	4 ml DMF+0,1 ml Hac
ESN-9	03/01/22	Benzenedicarboxylic acid	66	mg	FeCI3	65	mg	4 mi DWF+0,1 mi Hac
ESN-10	05/02/22	Furnaric acid	46	mg	FeCI3	65	mg	4 miDWF
ESN-11	05/02/22	Furnaric acid	46	mg	FeCI3	65	mg	4 mi DWF+0,1 mi HAc
ESN-12	05/02/22	Furnaric acid	46	mg	FeCI3	65	mg	4 mi DMF
ESN-13	05/02/22	Biphenyl-4,4'-dicarboxylic acid	10	mg	FeCI3	6	mg	3 ml DMF
ESN-14	05/02/22	[1,1':4',1"-Terpheny(]-4,4"-dicarboxylic acid	10	mg	FeCI3	5	mg	4 mi DWF+0,1 mi HAc
ESN-15	05/16/22	Benzenedicarboxylic acid	16	mg	VCIS	50	mg	5 mi EtOH+1 mi HCl(1 M)
ESN-16	05/16/22	Benzenedicarboxylic acid	16	mg	Sc(NO3), H2O	Di	mg	2miDWF+2miDEF
ESN-17	05/16/22	Furnaric acid	12	mg	Sc(NO3), H2O	Di Li	mg	2miDWF+2miDEF
ESN-18	05/16/22	Furnaric acid	12	mg	VCIS	33	mg	5 ml EtOH+1 ml HO(1 M)
ESN-19	05/19/22	Benzenedicarboxylic acid	50	mg	VCIS	47	mg	3 ml DWF+0,1 ml HAc
ESN-20	05/19/22	Beruenedicarboxylic acid	50	mg	VCIS	47	mg	3 ml DWF+0,1 ml water

"mof_synthesis": [{ "vial_no": "ESN-1", "date": "03.01.22", "ligand_type": "Benzenedicarboxylic acid", "ligand_mass": 66, "ligand_mass_unit": "mg", "metal_salt_type": "FeCl3", "metal_salt_mass": 65, "metal_salt_mass_unit": "mg", "solvent": "4 ml DMF", "temperature": 120. "temperature_unit": "deg C", "time": 1, "time_unit": "day", "reaction_in": "oven", "mof": "MIL-88B (Fe)", "results": "orange powder" }, "vial_no": "ESN-2", "date": "03.01.22", "ligand_type": "Benzenedicarboxylic acid", "ligand_mass": 66, "ligand_mass_unit": "mg", "metal_salt_type": "FeCl3", "metal_salt_mass": 65, "metal_salt_mass_unit": "mg", "solvent": "4 ml DMF", "temperature": 120, "temperature_unit": "deg C", "time": 2, "time_unit": "hour", "reaction_in": "heat blok". "mof": "MIL-88B (Fe)", "results": "orange powder" }, . . .

{

Backup Feature: Meta Schema Builder

- Dynamically builds meta schema based on user settings
- Meta schema is responsible for complexity of schema editor

→ Advanced mode and beginner mode for schema editor

metaSchema* : object						
allowBooleanSchema* : boolean	true	false				
allowMultipleTypes* : boolean	true	false				
objectTypesComfort* : boolean	true	false				
markMoreFieldsAsAdvanced : boolean	true	false				
showAdditionalPropertiesButton : boolean	true	false				
showJsonLdFields : boolean	true	false				

Backup Feature: Snapshot Sharing

When publishing a project, you can choose the name of the project and set a password for future edits. Projects will be deleted after not being accessed for 90 days.

, Snapshot: http://metaconfigurator.informatik.uni-stuttgart.de/?snapshot=872c817b-b02d-4510-9090-2a87a01bccf6 Project: http://metaconfigurator.informatik.uni-stuttgart.de/?project=demo

Backup Feature: Ontology Integration

✓ \$defs : object		\times
✓ person : object		×
@id : string	dbo person	×
@type : string, array	c person	
type : enum	S	
title : string	t personName	
description : string	c chairperson	

Backup Application Case #1: MOF Synthesis (in Chemistry)

- Scenario from Biochemistry department¹
- About Metal-organic framework (MOF) synthesis data
- 1. Export Excel table² as CSV
- 2. Import of CSV into MetaConfigurator (+ automatic schema inference)
- 3. Changes in schema through intuitive schema editor diagram
- 4. External Python script³ for appending metadata to the synthesis data

→ Now data is in standardized format, interoperable. Schema can be shared with others, automatic validation possible. Easier maintenance of data through tools, such as MetaConfigurator.

The Python script queries data from the PubChem database, based on code from Torsten Gieß University of Stuttgart

 $[\]frac{1}{2}$ In cooperation with Jürgen Pleiss

 $[\]frac{1}{3}$ The Excel document with synthesis data was provided by Esengül Ciftci

Backup Application Case #2: preCICE Adapter Configuration Schema

- preCICE is a coupling library for partitioned multi-physics simulations¹
- It has more than 10 different configuration files for different adapters and tools
- Some are solver-specific but many more or less the same
- Introduction of common Adapter Schema using MetaConfigurator

→ MetaConfigurator offers up-to-date web form showing the fields of the schema in discussion & allows for editing the schema (without prior experience needed)

Backup User Study – Research Questions

- **RQ1:** Which aspects of the tool can be improved?
- RQ2: Are users able to perform particular types of tasks using the tool?
- **RQ3:** Would people use the tool in practice?
- GOAL:
 - To improve our tool with help of feedback
 - To gather information about user habits

Backup User Study - Methodology

- Small-scale: 5 Participants
- Qualitative
- Participants needed to solve example tasks:
 - Retrieving information
 - Editing data
 - Editing the schema
- Participants were asked to share their opinion and improvement suggestions

Backup User Study - Results

- **RQ1**: Which aspects of the tool can be improved?
 - 23 aspects identified: 20 addressed, 3 remain as future work
- **RQ2**: Are users able to perform particular types of tasks using the tool?
 - 90% of the tasks correctly without hints
 - 100% of the tasks solved with giving small hints
- **RQ3:** Would people use the tool in practice?
 - All participants responded they would potentially use MetaConfigutator in practice
 - Some recommended our tool to other people