
How to distribute binaries using the tree of life



1 Binary dependencies
Brief history of julia package management

2 BinaryBuilder.jl



What is a binary (executable)?

A binary executable is...

file with binary content (that is a sequence of 0s and 1s)

directly executable by the target system, given it conforms to the systems ABI
facilitating separation of product and source code

from https://diveintosystems.org/
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Binary dependencies
Example

Lets assume I write a julia program and want to reuse a program written in another language
by calling its binary.
That is as easy as

� �
julia> run(`fortune`)

Q: Why did the tachyon cross the road?

A: Because it was on the other side.

Process(`fortune`, ProcessExited(0))� �
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Binary dependencies
Except...

You don’t know what version you will call

Whether it’s installed at all

� �
julia> run(`fortune`)

ERROR: IOError: could not spawn `fortune`: no such file or directory (ENOENT)� �
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Binary dependencies
Solutions of the past

2012 Julia pulicly announced

2013 BinDeps.jl: at Pkg.build() time binaries are downloaded/ build on-demand on the
target machine

2017 BinaryBuilder.jl & BinaryProvider.jl: binaries get build in a sandbox
environment and distributed decentrally by the creators

2019 Artifacts.jl & Yggdrasil: binaries get build in a sandbox environment on a
dedicated build machine and will automatically provided by a julia wrapper package (JLL)
centrally hosted under JuliaBinaryWrappers
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Binary dependencies
End of all issues∗
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BinaryBuilder.jl

provides an alpine linux based sandbox environment as .squashfs-image

this environment has all tools bundled to cross-compile your program to the supported
platforms

it will tell all sorts of convenient lies to mimic the target platform (uname, sysctl, …)

sets appropiate environment variables and uses oldest libc possible for maximal
compatibility

will prevent assumptions (glidc vs musl, uses non-standard paths)

currently supports C/C++, FORTRAN, Go, Rust
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BinaryBuilder.jl
Compiler shards

Specify the target platform in architecture-OS-library triplets.

� �
julia> triplet.(supported_platforms())

16-element Vector{String}:

"i686-linux-gnu" "x86_64-apple-darwin"

"x86_64-linux-gnu" "aarch64-apple-darwin"

"aarch64-linux-gnu" "x86_64-unknown-freebsd"

"armv6l-linux-gnueabihf" "i686-w64-mingw32"

"armv7l-linux-gnueabihf" "x86_64-w64-mingw32"

"powerpc64le-linux-gnu"

"i686-linux-musl"

"x86_64-linux-musl"

"aarch64-linux-musl"

"armv6l-linux-musleabihf"

"armv7l-linux-musleabihf"� �
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BinaryBuilder.jl
Accounting for incompabilities

C++: std::string can have C++03 or C++11 string ABI

FORTRAN: libgfortran also has 3 different ABIs

Custom feratures can be used, e.g. to account for different microarchitectures (AVX2, AVX512,
etc...)

After building, there is an extra auditing step catching known portability issues
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BinaryBuilder.jl
Building recipe I

� �
using BinaryBuilder

name = "libfoo"

version = v"1.0.1"

sources = [

ArchiveSource("<url to source tarball>", "sha256 hash"),

]

script = raw"""

cd ${WORKSPACE}/srcdir/libfoo-*

make -j${nproc}

make install

"""

platforms = supported_platforms()
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BinaryBuilder.jl
Building recipe II

products = [

LibraryProduct("libfoo", :libfoo),

ExecutableProduct("fooifier", :fooifier),

]

dependencies = [

Dependency("Zlib_jll"),

]

build_tarballs(ARGS, name, version, sources, script, platforms, products,

dependencies)� �
This build_tarballs.jl can be built using the wizard via BinaryBuilder.run_wizard().
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BinaryBuilder.jl
fortune

https://github.com/JuliaPackaging/Yggdrasil/pull/6625

https://github.com/JuliaRegistries/General/pull/82293

https://github.com/JuliaBinaryWrappers/fortune_jll.jl

� �
pkg> add fortune_jll

julia> using fortune_jll

julia> run(`$(fortune())`)

Every cloud has a silver lining; you should have sold it, and bought titanium.� �
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BinaryBuilder.jl
FAQ

Hey, this is cool, can I use this for my non-Julia related project?
Absolutely! There’s nothing Julia-specific about the binaries generated by the cross-compilers
used by BinaryBuilder.jl.

Happy building!
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