
Research Software and its Developers: Random thoughts

Bálint Aradi

5th conference for Research Software Engineering in Germany

Karlsruhe, 2025-02-25

https://github.com/aradi/

https://github.com/aradi/

2

Introduction

https://en.wikipedia.org/wiki/Town_Musicians_of_Bremen

(Grimm Brüder – Die Bremer Stadtmusikanten)

https://en.wikipedia.org/wiki/Town_Musicians_of_Bremen

3

Bremen Center for Computational Materials Science (BCCMS)

https://www.uni-bremen.de/bccms

● 8 research groups
● Materials science through computer simulations
● Multi-disciplinary (Physics, Chemistry & Engineering)
● Various aspects of materials science
● Multi-scale (atomistic, meso, macro)

Light-Matter Control of Quantum Materials

https://www.uni-bremen.de/bccms

4

My “RSE” background

● Open source (LGPL)
● First commit 2004
● Modern Fortran (2008/2018)
● ~ 130,000 lines
● 2 core developers / project

managers
● 5 – 6 core contributors
● 20 – 30 casual contributors
● Few hundred users

https://www.dftbplus.org/

https://www.dftbplus.org/

5

Open source engagement

https://github.com/aradi/hsd-python

https://github.com/fortuno-repos/fortuno

https://github.com/aradi/fypp

https://github.com/aradi/hsd-python
https://github.com/fortuno-repos/fortuno
https://github.com/aradi/fypp

6

Outline

● Roles and competencies of research engineers

● Where/When should RSEs enter scientific projects

● Strengthening the RSE-skills of scientists

● Thoughs about software reuse and library approach

● Building communities: the example of the Fortran community

● Final thoughts

7

Who is a Research Software Engineer?

Here's the image of a research
software engineer at work. You
can see her focusing on her
tasks amidst a busy and
intellectual workspace.

Create an image of a research
software engineer at work

RSE as depicted by DALL-E

8

Who is a Research Software Engineer? (#2)

A Research Software Engineer (RSE) is a professional who combines expertise in software
development with research methodologies to create, optimize, and maintain software used in
academic and scientific research. RSEs ensure that computational tools, models, and workflows are
efficient, reproducible, and sustainable, bridging the gap between research and high-quality
software engineering.

● Hybrid role
Software engineering skills with domain-
specific research knowledge

● Focus on sustainability
Develops software that is maintainable,
scalable and reusable

● Reproducibility advocate
Implements best practices to ensure research
results can be replicated

● Collaboration-oriented
Works closely with researchers, scientists
and developers.

● Innovation driven
Applies cutting-edge technologies (e.g.,
HPC, AI, cloud computing) to research
problems.

Key characteristics
RSE as defined by ChatGPT 4o

9

Functional RSE competencies (as defined by teachingRSE)

F. Goth et al., Foundational Competencies and Responsibilities of a Research Software Engineer

https://github.com/the-teachingRSE-project/competencies

Classical software engineer skills

Adapting to the software life cycle (SWLC)

Creating documented code building blocks (DOCBB)

Building distributable software (DIST)

Use software repositories (SW)

Software behaviour awareness and analysis (MOD)

Conducting and leading research (NEW)

Understanding research cycle (RC)

Software reuse (SRU)

Software publication & citation (SP)

Use domain repositories/directories (DOMREP)

Working in a team (TEAM) Teaching (TEACH)

Project management (PM) Interaction with users and other
stakeholders (USERS)

10

Research Software Engineers: ideal

Research software engineer of different genders resembling super heros (by DALL-E)

11

Research Software Engineer: doing the split

Software engineer
skills

Conducting and leading
research (NEW)

University positions for RSEs in Germany
● Typically “Mittelbau” (E12/E13)
● “Leading research” is (usually) not part of the

job description

Conducting, especially leading
research is already a full time job

● Following development of research field
● Visiting conferences
● Writing applications for research support
● Supervising BSc. / MSc. / PhD-students

Domain specific knowledge

12

Domain-specific knowledge

Fundamental theories

● Core scientific theories
relevant to the domain
(e.g. QM, fluid
mechanics,
thermodynamics, etc.)

Mathematical proficiency

● Advanced mathematical skills
typically used in the domain
(linear algebra, calculus, etc.)

● Deep understanding of applied
numerical methods and their
limitations

Project related knowledge

Having a science educational background can be of great advantage

● Specialization to RS-developer in normal science curriculum should
be possible

● Bachelor/Master thesis with strong numerical focus

● Goal of the project
● Motivation of the

implemented equations
● Connecting numerics with

on physical interpretation

13

Where/When does the RSE enter the scientific software project?

https://everse.software/RSQKit/life_cycle

The research project life cycle

https://everse.software/RSQKit/life_cycle

14

Classification of research software

https://everse.software/RSQKit/three_tier_view

DLR software classification

DLR Software Engineering Guidelines (v1.0.0)

Application Class 0
● Personal use, small scope
● Distribution outside of organization not planned

Application Class 1
● Non-developers can use
● Extension/development by externals possible

Application Class 2
● Defined development process
● Long-term development and maintenance

Analysis code
● Personal use, small scope
● captures computational research processes

and methodology

Prototype tools
● Demonstrating new idea
● Developed & used by more than one person

Research software infrastructure
● Broadly applicable
● Large, distributed development team

Application Class 3
● Critical software
● Software with product characteristics

RSQKit three tire model

T

P

https://everse.software/RSQKit/three_tier_view
https://zenodo.org/records/1344612

15

It all starts with teaching

Here is the comic-style image depicting the theme "It
all starts with teaching," featuring a diverse group of
children with their teacher in a vibrant classroom.
(DALL-E)

“Teaching RSE-skills” around 1997

Note: punch cards and fixed format source
were not state-of-the-art for long time any more
(Fortran 90/95 standard published already)

Published in 1972

16

Teaching ALL science students the basic skills

Language basics

Work-flow basics

● Basic data types
● (Minimal knowledge about numerical

arithmetic)
● Basic containers / arrays
● Functions, modules, etc.
● File I/O
● Visualization
● Error handling (exception & co.)
● Basics of relevant programming

paradigms (functional programming,
OOP, etc.)

● Building the program (if applicable)
● Testing
● Code quality analysis
● Version control (collaborative development)
● Packaging and distribution

Basic skills

● Turning (mathematical) problems into algorithms
● Project work, interaction

17

Example: (quasi) introductory course for physics students

Disclamer: this is my course @ Uni Bremen

https://atticlectures.net/scipro/python-2024/

● Introductory course (2 SWS)
● Inverted class room concept

● Learning @ HOME:
● tutorial videos, detailed slides
● cheat sheets

● Programming @ UNI:
● programming with live support

(generalized pair programming)
● Final project (~400 lines)

● Numerical simulation software
● Collaborative project (2 students, via Git)
● Tests
● Documentation
● Packaging

0. Setting up the working environment

1. Python basics

2. Tuples and lists

3. Sets and dictionaries

4. Functions and arrays

5. File I/O and plotting

6. Git basics and Python modules

8. Further Git features

9. Unit testing and code quality analysis

10. Parallel and collaborative development
 with Git

11. Command line arguments, packaging
 and distribution

Lecture plan

https://atticlectures.net/scipro/python-2024/

18

Which (1st) language should we teach to scientists?

19

#include <iostream>

#include <sycl/sycl.hpp>

using namespace sycl;

const std::string secret{"Ifmmp-!..."};

const auto sz = secret.size();

int main() {

 queue q;

 char* result = malloc_shared<char>(sz, q);

 std::memcpy(result, secret.data(), sz);

 q.parallel_for(sz, [=](auto& i) {

 result[i] -= 1;

 }).wait();

 std::cout << result << "\n";

 free(result, q);

 return 0;

}

Which language should we teach? (#2)

Reinders et al., Data Parallel C++, 2nd ed.

20

program hello

 implicit none

 character(*), parameter :: secret = "fjdsflks81824fsdn,mnj3..."

 character(:), allocatable :: res

 integer :: i

 res = secret

 do concurrent (i = 1 : len(secret))

 res(i:i) = char(ichar(res(i:i)) - 1)

 end do

 print *, res

end program hello

Which language should we teach? (#3)

21

At the interface between R and SE

Co-array Fortran

Research Software engineering

● Physical model
● Mathematical formulation of the model
● Algorithmic description of the math

● Numerical modelling of the algorithm
● Technical details of the implementation
● Technology know-how

if (this_image() == 1) then

 n_circle = in_circle

 do i = 2, num_images()

 n_circle = n_circle + in_circle[i]

 end do

 ...

end if

22

Software reusage example: ESL (break existing monolithism)

M. J. T. Oliveira et al, J. Chem. Phys 153, 024117 (2020)

https://esl.cecam.org
● Started 2014 as a CECAM initiative
● Community-maintained library of software
● Lower barrier for new el. struct. codes
● Identifying existing libraries to include
● Extract/recode sub-packages as libraries
● Incorporate libraries into participating codes

Exchange between
developers on best practices

https://esl.cecam.org/
https://cecam.org/

23

Dependencies

https://xkcd.com/2347/

Someday ImageMagick will break for good and
we’ll have a long period of scrambling as we try to

reassemble civilization from the rubble

● ELSI: parallel diagonalizers and solvers
(depends itself on 6-7 further scientific packages)

● libNEGF: Non-Equlibrium
● Simple-DFTD3: offering D3-dispersion correction
● TBLite: tight binding with xTB-Hamiltonian model
● Plumed: Meta-dynamics driver
● ChIMES-calculator: Chebyshev-polynomial base force

fields

● LAPACK, BLAS, ScaLAPACK
● ARPACK-NG, MAGMA

● MpiFx: Modern user friendly Fortran-
wrappers around MPI

● ScalapackFx: Moder user friendly
Fortran-wrappers around ScaLAPACK

Class 0

Class 1

Class 2

https://xkcd.com/2347/

24

Levels of (scientific) projects dependencies

Class 0

Project under your control

● Project developed by the
same group/community as
the depender

● Expected life-time similar
to depender’s

● Chances of unexpected
API-changes minimal

● Packaging / distribution
strategy similar to
depender’s

Class 1

Standard project

Class 2

Project with uncertain future

● Project developed by a big
community

● De-facto standard library
for many projects

● Expected life-time beyond
depender’s

● Chances of unexpected
API-changes minimal

● Packaging / distribution
strategy likely to be
compatible with
depender’s

● Project developed by a
small community

● Uncertain life-time
expectancy

● Unexpected API-changes
possible

● Packaging / distribution
strategy might be
incompatible with
depender’s

● Dependency should be
optional

25

How we deal with class 2 (optional) dependencies

Meta-programming approach

type :: TDftbPlus

 #:if WITH_SOCKETS

 type(ipiSocketComm) :: socket
 #:endif

end type

#:if WITH_SOCKETS

 call sendEnergyAndForces(&

 & env, this%socket, ...)

#:endif

Mocking approach

+ Build time error on usage of
non-existing component

- Code less readable (every
usage/import must be guarded)

#:if not WITH_SOCKETS

type :: ipiSocketComm

 ..

contains

 procedure :: ...

end type ipiSocketComm

#:endif

+ Requires minimal amount (or no)
 meta-programming

- Might be tedious for complex
objects/interfaces

- Incorrect usage of non-existing
component might be detectable only
at run-time

26

Packaging & distribution: for whom?

Novice / casual user Professional user

● Needs lowest possible entry barrier
● Out-of-the-box (no need of fine-tuning)
● Target: Laptop of the user
● Binary packages preferable
● deb, rpm, homebrew, conda, …

● Can deal with more complex builds
● Fine-tuning required
● Target: Workstation, HPC environment
● Reproducible build
● easy-build, spack, ...

27

Building of communities: the revival of Fortran

https://www.tiobe.com/tiobe-index/fortran/

J3-repository @ GitHub

1st commit to
Standard Library

1st commit to
Fortran Package Manager

Development of new compilers

(LFortran / Flang)

just a few persons
as initial seed

Open Source Community Building
Wed 16:00

● Lowering entry barrier
● Making participation “cooler”
● Offering long-term perspective

● At which application level
do we need a community?

https://www.tiobe.com/tiobe-index/fortran/

28

Rewarding contributors / Citation of software products

Stand-alone code Library

library

stand-alone stand-alone stand-alone

stand-alone

● Citing the original publication (e.g. VASP)

[1] G. Kresse and J. Hafner, Phys. Rev. B 47 , 558 (1993).

[2] G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6 , 15 (1996).

[3] G. Kresse and J. Furthmüller, Phys. Rev. B 54 , 11 169 (1996).

● Refreshing reference publication regularly,
Inviting active developers of last period as co-
authors (example: DFTB+)

B. Aradi et al., J. Phys. Chem. A 111, 5678 (2007).

B. Hourahine et al., J. Chem Phys. 152, 124101 (2020).

B. Hourahine et al., J. Phys. Chem. A, submitted (2025).

● Essential libraries often orders of
magnitude fewer cited as dependent
stand-alone codes (example: libxc)

● We need to work on meaningful indirect
citation index (or any other quantitative
measure for usage)

29

Academic code development vs. outsourcing to industry

Domain expertise

Customizability

Reproducibility & open science

Cost efficiency (?)

Knowledge retention

Flexibility & experimentation

Lack of RSE best practices

Limited user support

Time constraints

Limited long-term maintenance

Funding challenges

Curiosity motivated

Education & skill development

Ethical & privacy considerations

Scalability issues

Slow adoption & usability issues

Lack of proper quality assurance

Risk of one person dependence

RSE problem

System problem

Hybrid models might bring synergies (example: DFTB+ in Biovia’s Materials Studio)

https://www.3ds.com/de/products/biovia/materials-studio/semiconductors

