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Introduction

Experimental campaigns and motivations

Freestanding Double Layer Target (DLT) production

Particle In Cell (PIC) simulations

Conclusion and perspectives

Overview
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Laser-driven ion sources

M. Roth and M. Schollmeier, CERN 
Yellow Reports (2016)

Å Material analysis

Å Medical applications and 

radiobiology

Å Radioisotope and neutron 

production

Å Fast ignition in inertial 

confinement fusion

Applications:

Solid 
targets

I > 1019 W/cm2

TNSA

Multiple-MeV ions

10s TW Class 
Lasers

100s TW and PW 
Class Lasers

Å Compact system

Å High repetition rate

Å Higher ion energies

Å More ions accelerated

The target is 
the key

A. Macchiet al., Reviews of Modern Physics, 85.2 (2013)
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P. L. Poole et al., New Journal of Physics 20.1 (2018)

Electrons

Thinner 
targets

Higher ion 
energies

Ions

ὸͯ ρππÓὲά ‘ά

2× proton energy

Enhanced laser-driven acceleration: thin targets
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Enhanced laser-plasma 
coupling through a
near-critical layer

thin foil

Near-critical Double Layer targets (DLT)

Carbon foams

M. Passoniet al., Phys. Rev. Accel. Beams 19.6 (2016)

Near-critical Double Layer Targets (DLT)
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I. Prencipeet al., Plasma Physics and Controlled Fusion 58.3 (2016)

DLT

30% more energy, polarization independent

Å 100 TW class laser

Å 30° incidence

Å Thinner foam 8 µm

DLT experimental campaign @ CoReLS, IBS
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I. Prencipeet al., New Journal of Physics 23.9 (2021)

100% more proton energy 4× proton number

Å 100s TW class laser

Å 0° incidence

Å thinner foam 4 µm

Effect of laser incidence and foam thickness

10
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15

5

0

MeV

Features of thefoam layer arepivotal

Experimental campaign @ Draco, HZDR



7Davide Orecchia

Å High thickness uncertainty (±30%)

Å Limited available thickness

Å Not light-tight

Å Prone to wrinkles and deformation 

while handling

Standard substrates

Substrate grown directly 
on the target holder

Å Tunablethickness (ρππÓὲά ‘ά)

Å Thickness uniformity (light-tight)

Å High reproducibility among holes

Å Freedom in material choice

The experimental resultsjustify the 
interest in target development 

Targetry
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Hole filling with 
sacrificial material

target holder

silicon wafer

Filmdeposition 
(magnetron sputtering)

Removal of the 
filling material

Removal of the 
silicon wafer

Carbon foam 
deposition (PLD)

Freestanding DLT production
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Hole filling with 
sacrificial material

target holder

silicon wafer

Removal of the 
silicon wafer

Holder preparation
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Sucrose solution

Å Soluble in water

Å Crystalline

Å Shrinks during crystallization (concave surface)

Choice of the filling material
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Sucrose solution Caramel

Å Soluble in water

Å Crystalline

Å Shrinks during crystallization (concave surface)

Å Soluble in water

Å Amorphous

Å Planar uniform surface

ͯ180 °C silicon wafer

Choice of the filling material
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Filmdeposition 
(magnetron sputtering)

DLT substrate production
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DCMS HiPIMS
Direct Current 

Magnetron Sputtering

High Power Impulse 

Magnetron Sputtering

ÅWell established

Å Mostly neutral species

Å Higher deposition rate

Å Ionization fraction>50%

Å Voltage bias (tunable

sputtered ions energy)

@

Å High voltage + magnetic field

Å Uniform deposition over large areas

Magnetron sputtering


