

5th Targetry for High Repetition Rate Laser-Driven Sources Workshop

MILANO 1863

Advancements in double-layer target production

for enhanced laser-driven ion acceleration

Davide Orecchia

Dresden, 26/10/2021

Overview

Introduction

Experimental campaigns and motivations

Freestanding Double Layer Target (DLT) production

Particle In Cell (PIC) simulations

Conclusion and perspectives

Laser-driven ion sources

- Medical applications and ٠ radiobiology
- Radioisotope and neutron • production
- Fast ignition in inertial ٠ confinement fusion

The target is the key

Enhanced laser-driven acceleration: thin targets

P. L. Poole et al., New Journal of Physics 20.1 (2018)

Near-critical Double Layer Targets (DLT)

Carbon foams

Enhanced laser-plasma coupling through a near-critical layer

Near-critical Double Layer targets (DLT)

M. Passoni et al., Phys. Rev. Accel. Beams 19.6 (2016)

POLITECNICO Davide Orecchia

DLT experimental campaign @ CoReLS, IBS

I. Prencipe et al., Plasma Physics and Controlled Fusion 58.3 (2016)

Davide Orecchia

POLITECNICO

MILANO 1863

E_p^{max} (MeV)

30° incidence

5

Effect of laser incidence and foam thickness

Features of the **foam layer** are **pivotal**

The **experimental results** justify the interest in **target development**

POLITECNICO

MILANO 1863

Standard substrates

- High thickness **uncertainty** (±30%)
- Limited available thickness
- Not light-tight
- Prone to wrinkles and deformation while handling

Substrate grown directly on the target holder

- Tunable thickness (100s $nm \div \mu m$)
- Thickness uniformity (light-tight)
- High reproducibility among holes
- Freedom in material choice

O Freestanding DLT production

Film deposition (magnetron sputtering)

Removal of the filling material

Removal of the silicon wafer

Hole filling with

sacrificial material

Carbon foam deposition (PLD)

POLITECNICO MILANO 1863

(2)

POLITECNICO

MILANO 1863

- Soluble in water 🗸 ٠
- Crystalline 🗙 ٠

POLITECNICO

MILANO 1863

Shrinks during crystallization (concave surface) 🔀 ٠

O DLT substrate production

Film deposition (magnetron sputtering)

5

Removal of the filling material

Removal of the silicon wafer

Hole filling with

sacrificial material

Carbon foam deposition (PLD)

POLITECNICO MILANO 1863

(2)

O Magnetron sputtering

@ ManoLab

• High voltage + magnetic field

POLITECNICO

MILANO 1863

• Uniform deposition over large areas

DCMS

Direct Current

Magnetron Sputtering

- Well established
- Mostly **neutral** species
- Higher deposition rate

HiPIMS

High Power Impulse Magnetron Sputtering

- **Ionization** fraction >50%
- Voltage bias (tunable sputtered ions energy)

O Magnetron sputtering: films

DCMS

- Columnar growth
- Tensile stress state

POLITECNICO

MILANO 1863

- Compact morphology
- Compressive stress state

- Good physical and chemical properties
- Established for targetry

Hybrid layers of DCMS and HiPIMS

Parametric study

- % DCMS and HiPIMS
- Number of hybrid layers
- Voltage bias

D. Dellasega et al., Applied Surface Science 556 (2021)

O Magnetron sputtering: freestanding films

- 80% DCMS and 20% HiPIMS
- 4 hybrid layers
- 250 V bias

- Near-bulk density (80% or greater)
- <5% thickness uncertainty
- Low stress state

POLITECNICO

MILANO 1863

• 80-90% intact freestanding films

Davide Orecchia

Hybrid layers of DCMS and HiPIMS

O Magnetron sputtering: freestanding films

DCMS

- 80% DCMS and 20% HiPIMS
- 4 hybrid layers
- 250 V bias

• 200 $nm \div 2 \mu m$ thickness range

- Near-bulk density (80% or greater)
- <5% thickness uncertainty
- Low stress state

POLITECNICO

MILANO 1863

• 80-90% intact freestanding films

O Removal of the filling material

Hole filling with sacrificial material

Film deposition (magnetron sputtering)

Removal of the silicon wafer

POLITECNICO MILANO 1863

2)

Removal of the filling material (caramel)

(6)

Removal of the filling material (caramel)

Davide Orecchia

POLITECNICO

MILANO 1863

foam deposition

More defects in the • X foam (dielectric)

O Near-critical carbon foam deposition

Davide Orecchia

POLITECNICO

O Pulsed Laser Deposition (PLD)

A. V. Rode et al., Applied Physics A 70.2 (2000) A. Zani et al., Carbon 56 (2013)

Parameters

- Pulse energy and fluence
- Background gas pressure
- Pulse duration (ablation regime)

ns-PLD

- Well established
- Few ns pulses
- 100s mJ per pulse
- Up to 10 Hz

POLITECNICO

MILANO 1863

Nonstandard technique

fs-PLD

• <100 fs pulses

٠

- Few mJ per pulse
- kHz or higher

S fs-PLD: nanofoam of different elements

Freedom in element choice for the nanofoam material

POLITECNICO

MILANO 1863

fs-PLD

- Nonstandard technique
- <100 fs pulses
- Few mJ per pulse
- kHz or higher

Parameters

- Pulse energy and fluence
- Background gas pressure
- Pulse duration (ablation regime)
- Choice of the element

Near-critical carbon foams

Snowfall-like aggregation model

- Nanoparticles ۲
- Fractal aggregates
- Carbon foam •

MILANO 1863

A. Maffini et al., Physical Review Materials 3.8 (2019)

ns-PLD

2 µm

fs-PLD

200 nm

Parametric study

- Laser fluence
- Gas pressure
- **Pulse duration** • (ns or fs)

POLITECNICO Davide Orecchia

O Coupling with the freestanding substrate

- Near-critical density
- Foam uniformity
- µm thickness

POLITECNICO

MILANO 1863

- Good substrate adhesion
- fs-PLD

٠

- 2.6 mJ, 360 mJ/cm²
- 250 Pa (Argon)

Freestanding substrate thickness

200 nm 400 nm and up

Hyp: Freestanding film membrane vibrations

Davide Orecchia

POLITECNICO

2D PIC simulations: proton spectra

a₀ = 5

a₀ = 50

Significant enhancement in proton energy and number

Weak dependence on substrate thickness for DLT

Freestanding film interesting as **SLT** for lower intensities

Conclusions and perspectives

Effective **production** of near-critical DLT directly on target holders

Experimental test in particle acceleration campaigns

both SLT and DLT

Perform more realistic simulations

- $\sim 10 \, \mu m$
- Near-critical density
- Good substrate adhesion •
 - $400 nm \div 2 \mu m$
 - Low stress state
 - Near-bulk density
 - Uniform thickness

Extend the available parameter range and optimize the design

Acknowledgments

M. Passoni

D. Vavassori

D. Dellasega

M. Zavelani

A. Maffini

A. Formenti

V. Russo

F. Mirani

M. Galbiati

D. Orecchia

Thank you for your attention!

