Contribution ID: 81 Type: Oral

Atmospheric impact of the extreme geomagnetic storm of May 10/11, 2024

Wednesday 18 September 2024 09:50 (20 minutes)

On May 10-11, two CMEs arriving within few hours initiated a geomagnetic storm with a DST of around -400 nT in the main phase. With a Kp of 9 for several hours, the threshold for an "extreme" geomagnetic storm was reached for the first time since the Halloween storm in October/November 2003, and polar lights were clearly visible well into magnetic midlatitudes. Proton fluxes were enhanced for several days, reinforced by a third CME arriving on May 13; however, they were distinctly lower than for the Halloween SPE of October 2003, making this a fairly moderate solar proton event. Analyses of the still ongoing satellite data-sets MLS/AURA and ACE-FTS/SCISAT will be discussed, showing a small ozone loss in the high-latitude upper mesosphere, as well as moderate increases of NO and N_2O in the upper mesosphere. The spatial structure of the response is consistent with a small, soft-spectra solar proton event, but it appears to be weaker, and restricted to higher altitudes, than, e.g., the response to the much more moderate geomagnetic storm of April 2010. However, a direct comparison is difficult as the instruments used to assess the April 2010 storm (MIPAS/ENVISAT, SCIAMACHY/ENVISAT, SOFIE/AIM) are inoperable now. This emphasizes on the one hand the large spread of possible impacts of geomagnetic storms, on the other hand the need for continuing global observations.

Solicited or Contributed

Contributed

Presenting author

Miriam Sinnhuber

Author list and affiliations

Primary author: SINNHUBER, Miriam (Institut für Meteorologie und Klimaforschung, Karlsruher Institut für Technologie)

Presenter: SINNHUBER, Miriam (Institut für Meteorologie und Klimaforschung, Karlsruher Institut für Technologie)

Session Classification: Stratosphere / mesosphere / thermosphere response and coupling of atmospheric layers

Track Classification: Stratosphere / mesosphere / thermosphere response and coupling of atmospheric layers