
TESTING
Introduction
RSE Summer School, September 24, 2024 Jakob Fritz, Maria Lupe Barrios Sazo, Dirk Brömmel, Robert
Speck Jülich Supercomputing Center, Forschungszentrum Jülich

Member of the Helmholtz Association

Overview
Schedule I

Talk

Why to do testing

What is “coverage”

How to differentiate tests (Two dimensions)

Different scopes of tests

Different types of tests

Popular testing frameworks

When to use what test

Examples

Getting things done

Coffee break

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 1

Overview
Schedule II

Talk

How to differentiate tests (extension)

More different scopes of tests

More different types of tests

Examples

Getting more things done

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 2

Overview

Comic from XKCD (2986).

We all don’t know everything:

Regardless of how much you already know

about testing, there is stuff about testing, that

you don’t know yet.

This talk shall give ideas where and how to

start or improve your test suit

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 3

Overview
Why to do testing

Reason for testing:

⇒ Finding bugs

Reason for finding bugs:

⇒ Making the user happy (generally) / making the results reproducible (in science)

Based on Wacker 2015

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 4

Overview
Why to do testing

Reason for testing:

⇒ Finding bugs

Reason for finding bugs:

⇒ Making the user happy (generally) / making the results reproducible (in science)

So what makes a user happy / the results reproducible?

Based on Wacker 2015

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 4

Overview
Why to do testing

Reason for testing:

⇒ Finding bugs

Reason for finding bugs:

⇒ Making the user happy (generally) / making the results reproducible (in science)

So what makes a user happy / the results reproducible?

Test added Test fails Bug reported Bug fixed

MEH MEH MEH SMILE

Based on Wacker 2015

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 4

Overview
Coverage

What part of the code is covered?

Different metrics for coverage:

Line coverage ⇐ Which line was (partly) executed; Most often used

Path coverage ⇐ Which path (conditionals, …) was executed

Statement coverage ⇐ Which statements (even within a line) were executed

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 5

Overview
Two dimensions

Two individual dimensions to distinguish tests by scope and type

Unit Tests

Integration Tests

End-to

-End Tests

70%

20%

10%

Small

scope

Large

scope

Rather

fast

Rather

slow

Type of the test

Smoke test

Golden master test

Property based test

Fuzzy test

Mutation test

Distinction by scope and proposed fractions are based on Wacker 2015

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 6

Overview
Two dimensions

Two individual dimensions to distinguish tests by scope and type

Unit Tests

Integration Tests

End-to

-End Tests

70%

20%

10%

Small

scope

Large

scope

Rather

fast

Rather

slow

Type of the test

Smoke test

Golden master test

Property based test

Fuzzy test

Mutation test

Distinction by scope and proposed fractions are based on Wacker 2015

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 6

Overview
Two dimensions

Two individual dimensions to distinguish tests by scope and type

Unit Tests

Integration Tests

End-to

-End Tests

70%

20%

10%

Small

scope

Large

scope

Rather

fast

Rather

slow

Type of the test

Smoke test

Golden master test

Property based test

Fuzzy test

Mutation test

Distinction by scope and proposed fractions are based on Wacker 2015

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 6

Overview
Two dimensions

Two individual dimensions to distinguish tests by scope and type

Unit Tests

Integration Tests

End-to

-End Tests

70%

20%

10%

Small

scope

Large

scope

Rather

fast

Rather

slow

Type of the test

Smoke test

Golden master test

Property based test

Fuzzy test

Mutation test

Distinction by scope and proposed fractions are based on Wacker 2015

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 6

Distinguish by scope
Unit tests

Testing the smallest building blocks of your code. Often these are functions.

Ideally hermetic1 tests with little or no side effects.

Pros:

PLUS-SQUARE Rather fast to execute

PLUS-SQUARE Helpful to locate bugs, as little code is

tested per test

PLUS-SQUARE Easy to write if code is organized in many

small functions

PLUS-SQUARE Hermetic tests have fewer sources of

flakiness

Cons:

MINUS-SQUARE Hard to write if functions are highly

integrated

MINUS-SQUARE Does not check behavior of the complete

codebase/system

1”Test in a box”, no external dependencies

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 7

Distinguish by scope
Unit tests

Testing the smallest building blocks of your code. Often these are functions.

Ideally hermetic1 tests with little or no side effects.

Pros:

PLUS-SQUARE Rather fast to execute

PLUS-SQUARE Helpful to locate bugs, as little code is

tested per test

PLUS-SQUARE Easy to write if code is organized in many

small functions

PLUS-SQUARE Hermetic tests have fewer sources of

flakiness

Cons:

MINUS-SQUARE Hard to write if functions are highly

integrated

MINUS-SQUARE Does not check behavior of the complete

codebase/system

1”Test in a box”, no external dependencies

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 7

Distinguish by scope
End-to-End tests

Testing the entire codebase. I.e. a complete pipeline. This could be reading in data, processing it,

and storing all results in various formats (table, figures, websites, …).

Pros:

PLUS-SQUARE Tests more realistic usage of the codebase

PLUS-SQUARE Easy to implement even for strongly

integrated code

Cons:

MINUS-SQUARE Rather slow to execute

MINUS-SQUARE Can be prone to errors or external issues

(e.g. flaky internet connection, or lacking

availability of a service)

MINUS-SQUARE Large codebase tested in single job, so

hard to track origin of bugs

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 8

Distinguish by scope
End-to-End tests

Testing the entire codebase. I.e. a complete pipeline. This could be reading in data, processing it,

and storing all results in various formats (table, figures, websites, …).

Pros:

PLUS-SQUARE Tests more realistic usage of the codebase

PLUS-SQUARE Easy to implement even for strongly

integrated code

Cons:

MINUS-SQUARE Rather slow to execute

MINUS-SQUARE Can be prone to errors or external issues

(e.g. flaky internet connection, or lacking

availability of a service)

MINUS-SQUARE Large codebase tested in single job, so

hard to track origin of bugs

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 8

Distinguish by type
Smoke tests

Electrical devices run on magic smoke.

Once the smoke leaves the device, it stops working.

Smoke tests often are easy to implement, as they only tests for failures.

There are no particular checks. Just compile and run your code. If errors occur, this test failed.

Pros:

PLUS-SQUARE Easy to implement

PLUS-SQUARE No need to update when changing the

code

Cons:

MINUS-SQUARE Not specific (what error from where)

MINUS-SQUARE Does not check if results are as expected

MINUS-SQUARE May take long (End-2-End test)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 9

Distinguish by type
Smoke tests

Electrical devices run on magic smoke.

Once the smoke leaves the device, it stops working.

Smoke tests often are easy to implement, as they only tests for failures.

There are no particular checks. Just compile and run your code. If errors occur, this test failed.

Pros:

PLUS-SQUARE Easy to implement

PLUS-SQUARE No need to update when changing the

code

Cons:

MINUS-SQUARE Not specific (what error from where)

MINUS-SQUARE Does not check if results are as expected

MINUS-SQUARE May take long (End-2-End test)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 9

Distinguish by type
Smoke tests

Electrical devices run on magic smoke.

Once the smoke leaves the device, it stops working.

Smoke tests often are easy to implement, as they only tests for failures.

There are no particular checks. Just compile and run your code. If errors occur, this test failed.

Pros:

PLUS-SQUARE Easy to implement

PLUS-SQUARE No need to update when changing the

code

Cons:

MINUS-SQUARE Not specific (what error from where)

MINUS-SQUARE Does not check if results are as expected

MINUS-SQUARE May take long (End-2-End test)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 9

Distinguish by type
Golden master tests

Check if specific examples still work as expected.

Specify input-data and expected output. Calculated output from input-data and compare with

expected output.

Pros:

PLUS-SQUARE Well suited for examples (e.g. from the

Tutorials / Docs)

PLUS-SQUARE Can detect changes of computational

results (though not always)

PLUS-SQUARE Comparably easy to test cases with

complex input- or output-data

PLUS-SQUARE Comparably easy to understand &

implement

Cons:

MINUS-SQUARE Limited test scope (as only a few

input-output-combinations are tested)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 10

Distinguish by type
Golden master tests

Check if specific examples still work as expected.

Specify input-data and expected output. Calculated output from input-data and compare with

expected output.

Pros:

PLUS-SQUARE Well suited for examples (e.g. from the

Tutorials / Docs)

PLUS-SQUARE Can detect changes of computational

results (though not always)

PLUS-SQUARE Comparably easy to test cases with

complex input- or output-data

PLUS-SQUARE Comparably easy to understand &

implement

Cons:

MINUS-SQUARE Limited test scope (as only a few

input-output-combinations are tested)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 10

Popular Frameworks

Single case Mocking Property based

testing

Mutation testing

C++ Catch2 &

GoogleTest

GoogleTest rapidcheck

Rust Cargo tests

(builtin)

Mockall Quickcheck &

proptest

Cargo-mutants

Python Pytest & Unittest Mock Hypothesis Mutatest

Java JUnit Mockito jqwik &

junit-quickcheck

Pitest

Julia Unit Testing Mocking

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 11

When to use what
Phase Input Processing Output

Examples Read file

Query (measurement) device

Query API

…

Process your data

This is your ‘actual work’

Your magic goes here

…

Store the results

In graphs, text-files,

tables, …

Push to a database

…

Testing Often contains parsing and

interaction with external re-

sources (use supplied func-

tions)

Put emphasis on parsing/vali-

dating the input, not on read-

ing the files (split into separate

units)

Put most emphasis on test-

ing here, as this is often the

most difficult work

Testing is more

difficult, but com-

ponents are more

standard (use sup-

plied functions)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 12

When to use what
Scope

Modular code:

/

setup.py

calculator

__init__.py

file_interaction.py

main.py

perform_calculations.py

testing

test_e2e.py

test_main.py

test_perform_calculations.py

Highly integrated code:

/

setup.py

calculator

__init__.py

main.py

testing

test_e2e.py

Unit tests

A single or few End-to-End tests

End-to-End tests

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 13

When to use what
Type

Regardless of how integrated the code is:

Implement tests of a type to a high coverage before starting with the next type.

When you already finished implementing your

code

1 Smoke Tests (for End-to-End tests)

2 Golden master tests

3 Property based testing (for unit tests)

While you still implement your code

1 Golden master tests (for unit tests)

2 Smoke Tests (for End-to-End tests)

3 Golden master tests (for End-to-End tests)

4 Property based testing (for unit tests)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 14

Examples

/

setup.py

calculator

__init__.py

file_interaction.py

main.py

perform_calculations.py

testing

test_e2e.py

test_main.py

test_perform_calculations.py

test_perform_calculations_gm.py

Files from: LINKhttps://jugit.fz-juelich.de/rg-rse/testing-calculator

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 15

Examples
file_interaction.py

6 def read_file(filename):

7 with open(filename, "r") as f:

8 equation_strings = f.readlines()

9 return equation_strings

10

11

12 def write_file(filename, content):

13 with open(filename, "w") as f:

14 f.writelines("\n".join(content))

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 16

Examples
main.py

10 def split_equation(eq_string):

11 pattern = r"^\s*(-?[\d\.]+)\s*([\+\-*\/%])\s*(-?[\d\.]+)\s*$"

12 m = re.match(pattern, eq_string)

13 if m:

14 a, operator, b = (m.group(1), m.group(2), m.group(3))

15 else:

16 raise ValueError("...")

25 return (a, b, operator)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 17

Examples
main.py

28 def combine_results(a, b, c, op):

29 return f"{a} {op} {b} = {c}"

30

31

32 def main():

33 eq_string_list = file_interaction.read_file("input.txt")

34 result_list = []

35 for eq_string in eq_string_list:

36 if eq_string.strip() == "":

37 result_list.append("")

38 a, b, op = split_equation(eq_string)

39 c = perform_calculations.solve_calculation(a, b, op)

40 result_list.append(combine_results(a, b, c, op))

41 file_interaction.write_file("results.txt", result_list)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 17

Examples
perform_calculations.py

26 def solve_calculation(a, b, op):

27 match op:

28 case "+":

29 c = run_addition(a, b)

30 case "-":

31 c = run_subtraction(a, b)

32 case "*":

33 c = run_multiplication(a, b)

34 case "/":

35 c = run_division(a, b)

36 case "%":

37 c = run_modulo(a, b)

38 case _:

39 raise ValueError("...")

40 return c

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 18

Examples
How to test them

/

setup.py

calculator

__init__.py

file_interaction.py

main.py

perform_calculations.py

testing

test_e2e.py

test_main.py

test_perform_calculations.py

test_perform_calculations_gm.py

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 19

Examples
test_e2e.py

A smoke test as end-to-end test

5 import os

6 from calculator import main

7

8

9 def test_main():

10 main.main()

11 # Assert result-file exists

12 assert os.path.isfile("results.txt")

13 # Assert they have the same number of lines

14 with open("input.txt", "rb") as f:

15 num_lines_input = sum(1 for _ in f)

16 with open("results.txt", "rb") as f:

17 num_lines_results = sum(1 for _ in f)

18 assert num_lines_input == num_lines_results

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 20

Examples
test_perform_calculations_gm.py

A golden master test for calculations

5 import pytest

6 from calculator import perform_calculations

7

8

9 @pytest.mark.parametrize("a, b, res", [(1, 1, 2), (2, 3, 5), (-2, 1, -1)])

10 def test_run_addition(a, b, res):

11 result = perform_calculations.run_addition(a, b)

12 assert result == res

13

14

15 @pytest.mark.parametrize("a, b, res", [(1, 1, 1), (0, 2, 0), (-2, 1, -2), (5, 0, 0)])

16 def test_run_multiplication(a, b, res):

17 result = perform_calculations.run_multiplication(a, b)

18 assert result == res
Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 21

Getting things done

Now, enough talking.

You can use the time until the break to write first tests for your code.

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 22

TESTING
Advanced
RSE Summer School, September 24, 2024 Jakob Fritz, Maria Lupe Barrios Sazo, Dirk Brömmel, Robert
Speck Jülich Supercomputing Center, Forschungszentrum Jülich

Member of the Helmholtz Association

Overview
Schedule II

Talk

How to differentiate tests (extension)

More different scopes of tests

More different types of tests

Examples

Getting more things done

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 23

Overview

Two individual dimensions to distinguish tests by scope and type

Unit Tests

Integration Tests

End-to

-End Tests

70%

20%

10%

Small

scope

Large

scope

Rather

fast

Rather

slow

Type of the test

Smoke test

Golden master test

Property based test

Fuzzy test

Mutation test

Distinction by scope and proposed fractions are based on Wacker 2015

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 24

Distinguish by scope
Integration tests

Knowing your units work is good, but it is also relevant to know if they interact properly.

Often this means checking interaction of only a few units (most often only two).

Pros:

PLUS-SQUARE Check interaction between two or more

units

PLUS-SQUARE Faster than End-to-End tests

PLUS-SQUARE Realize early if parameters are handled

incorrectly

Cons:

MINUS-SQUARE Can be hard to write depending on

structure of code

MINUS-SQUARE Slower than unit tests

MINUS-SQUARE Less specific on where errors came from

(if not combined with unit tests)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 25

Distinguish by scope
Integration tests

Knowing your units work is good, but it is also relevant to know if they interact properly.

Often this means checking interaction of only a few units (most often only two).

Pros:

PLUS-SQUARE Check interaction between two or more

units

PLUS-SQUARE Faster than End-to-End tests

PLUS-SQUARE Realize early if parameters are handled

incorrectly

Cons:

MINUS-SQUARE Can be hard to write depending on

structure of code

MINUS-SQUARE Slower than unit tests

MINUS-SQUARE Less specific on where errors came from

(if not combined with unit tests)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 25

Distinguish by type
Property based tests

Property based testing does not check for specific values, but checks properties of variables. This

could be types, sizes (of lists, matrices, …), or if lists are ordered. Furthermore, the input-data is

created by following constraints. This may uncover bugs not thought of.

Further reading: Hypothesis blog

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 26

Distinguish by type
Property based tests

Property based testing does not check for specific values, but checks properties of variables. This

could be types, sizes (of lists, matrices, …), or if lists are ordered. Furthermore, the input-data is

created by following constraints. This may uncover bugs not thought of.

Examples when working with text include long texts, texts with line-breaks, non-alphabetical

symbols such as commas, slashes, brackets, or Unicode in general.

Further reading: Hypothesis blog

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 26

Distinguish by type
Property based tests

Property based testing does not check for specific values, but checks properties of variables. This

could be types, sizes (of lists, matrices, …), or if lists are ordered. Furthermore, the input-data is

created by following constraints. This may uncover bugs not thought of.

Examples when working with text include long texts, texts with line-breaks, non-alphabetical

symbols such as commas, slashes, brackets, or Unicode in general.

Common issues when working with floats are very large values (issues with overflows), infinity and

NAN, as well as values very near to zero.

Further reading: Hypothesis blog

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 26

Distinguish by type
Property based tests

Property based testing does not check for specific values, but checks properties of variables. This

could be types, sizes (of lists, matrices, …), or if lists are ordered. Furthermore, the input-data is

created by following constraints. This may uncover bugs not thought of.

Pros:

PLUS-SQUARE Helps to find bugs for uncommon values of

inputs

Cons:

MINUS-SQUARE Difficult to create complex data structures

MINUS-SQUARE An addition rather than replacement for

golden master tests

Further reading: Hypothesis blog

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 26

Distinguish by type
Property based tests

Comic from XKCD (1700).
Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 27

Distinguish by type
Fuzzy tests

Fuzzy tests are similar to property based tests, but the used inputs are more general and the

results are checked less precise.

Pros:

PLUS-SQUARE Testing functions for robustness against

user- or interaction errors

PLUS-SQUARE Finding more edge-cases that raise errors

than property based testing

Cons:

MINUS-SQUARE Rather a smoke test for a wide range of

inputs

MINUS-SQUARE No test for correctness, but for errors

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 28

Distinguish by type
Fuzzy tests

Fuzzy tests are similar to property based tests, but the used inputs are more general and the

results are checked less precise.

Pros:

PLUS-SQUARE Testing functions for robustness against

user- or interaction errors

PLUS-SQUARE Finding more edge-cases that raise errors

than property based testing

Cons:

MINUS-SQUARE Rather a smoke test for a wide range of

inputs

MINUS-SQUARE No test for correctness, but for errors

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 28

Distinguish by type
Mutation Tests

In mutation tests, the code is changed, and the test suite runs again. By this, it is checked if the

tests are sensitive enough to detect the changes.

⇒ This is not about testing your code but about testing your test suite.

Essentially, mutation testing is a test of the alarm system created by the unit tests.

Pros:

PLUS-SQUARE Testing the actual coverage of your tests

(not only lines)

Cons:

MINUS-SQUARE Does not improve your code (-coverage)

but hints where to improve your tests

Quote by Evan Kepner 2020

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 29

Distinguish by type
Mutation Tests

In mutation tests, the code is changed, and the test suite runs again. By this, it is checked if the

tests are sensitive enough to detect the changes.

⇒ This is not about testing your code but about testing your test suite.

Essentially, mutation testing is a test of the alarm system created by the unit tests.

Pros:

PLUS-SQUARE Testing the actual coverage of your tests

(not only lines)

Cons:

MINUS-SQUARE Does not improve your code (-coverage)

but hints where to improve your tests

Quote by Evan Kepner 2020

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 29

Distinguish by type
Mutation Tests

In mutation tests, the code is changed, and the test suite runs again. By this, it is checked if the

tests are sensitive enough to detect the changes.

⇒ This is not about testing your code but about testing your test suite.

Essentially, mutation testing is a test of the alarm system created by the unit tests.

Pros:

PLUS-SQUARE Testing the actual coverage of your tests

(not only lines)

Cons:

MINUS-SQUARE Does not improve your code (-coverage)

but hints where to improve your tests

Quote by Evan Kepner 2020

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 29

Examples

/

setup.py

calculator

__init__.py

file_interaction.py

main.py

perform_calculations.py

testing

test_e2e.py

test_main.py

test_perform_calculations.py

test_perform_calculations_gm.py

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 30

Examples
file_interaction.py

6 def read_file(filename):

7 with open(filename, "r") as f:

8 equation_strings = f.readlines()

9 return equation_strings

10

11

12 def write_file(filename, content):

13 with open(filename, "w") as f:

14 f.writelines("\n".join(content))

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 31

Examples
main.py

10 def split_equation(eq_string):

11 pattern = r"^\s*(-?[\d\.]+)\s*([\+\-*\/%])\s*(-?[\d\.]+)\s*$"

12 m = re.match(pattern, eq_string)

13 if m:

14 a, operator, b = (m.group(1), m.group(2), m.group(3))

15 else:

16 raise ValueError("...")

25 return (a, b, operator)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 32

Examples
main.py

28 def combine_results(a, b, c, op):

29 return f"{a} {op} {b} = {c}"

30

31

32 def main():

33 eq_string_list = file_interaction.read_file("input.txt")

34 result_list = []

35 for eq_string in eq_string_list:

36 if eq_string.strip() == "":

37 result_list.append("")

38 a, b, op = split_equation(eq_string)

39 c = perform_calculations.solve_calculation(a, b, op)

40 result_list.append(combine_results(a, b, c, op))

41 file_interaction.write_file("results.txt", result_list)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 32

Examples
perform_calculations.py

26 def solve_calculation(a, b, op):

27 match op:

28 case "+":

29 c = run_addition(a, b)

30 case "-":

31 c = run_subtraction(a, b)

32 case "*":

33 c = run_multiplication(a, b)

34 case "/":

35 c = run_division(a, b)

36 case "%":

37 c = run_modulo(a, b)

38 case _:

39 raise ValueError("...")

40 return c

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 33

Examples
How to test them

/

setup.py

calculator

__init__.py

file_interaction.py

main.py

perform_calculations.py

testing

test_e2e.py

test_main.py

test_perform_calculations.py

test_perform_calculations_gm.py

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 34

Examples
test_main.py

A property based test on parsing text

29 @given(

30 a=st.integers(),

31 b=st.integers(),

32 op=st.sampled_from(["+", "-", "*", "/", "%"]),

33 ws1=st.text(alphabet=st.characters(categories=["Zs"], include_characters=("\t"))),

34 ws2=st.text(alphabet=st.characters(categories=["Zs"], include_characters=("\t"))),

35 ws3=st.text(alphabet=st.characters(categories=["Zs"], include_characters=("\t"))),

36 ws4=st.text(alphabet=st.characters(categories=["Zs"], include_characters=("\t"))),

37)

38 def test_split_equation_whitespace(a, b, op, ws1, ws2, ws3, ws4):

39 string1 = f"{ws1}{a}{ws2}{op}{ws3}{b}{ws4}"

40 ra, rb, rop = main.split_equation(string1)

41 assert (ra, rb, rop) == (a, b, op)

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 35

Examples
test_perform_calculations.py

A property based test for calculations

11 @given(a=st.integers(), b=st.integers())

12 @example(a=3, b=2)

13 def test_run_addition(a, b):

14 result = perform_calculations.run_addition(a, b)

15 result_2 = perform_calculations.run_addition(b, a)

16 assert result == result_2

17 if b > 0:

18 assert result > a

19 elif b < 0:

20 assert result < a

21 else: # b==0

22 assert result == a

23 if (a, b) == (2, 3):

24 assert result == 5
Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 36

Getting things done

Now, enough talking.

You can use the time until the end to extend your tests and to

increase test coverage for your code.

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 37

Wrap up

Thank you for taking time to work on your code and on

What did you like the most or what was the most interesting to you?

Feel free to approach the other tutors or me the whole week if

questions arise!

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 38

Wrap up

Thank you for taking time to work on your code and on

What did you like the most or what was the most interesting to you?

Feel free to approach the other tutors or me the whole week if

questions arise!

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 38

Wrap up

Thank you for taking time to work on your code and on

What did you like the most or what was the most interesting to you?

Feel free to approach the other tutors or me the whole week if

questions arise!

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 38

TESTING
Goodbye
RSE Summer School, September 24, 2024 Jakob Fritz, Maria Lupe Barrios Sazo, Dirk Brömmel, Robert
Speck Jülich Supercomputing Center, Forschungszentrum Jülich

Member of the Helmholtz Association

Kepner, Evan (2020). Mutatest 3.1.0 Documentation. Mutatest Documentation. URL:

https://mutatest.readthedocs.io/en/latest/install.html#mutation-

trial-process (visited on 05/15/2024).

Wacker, Mike (Apr. 22, 2015). Just Say No to More End-to-End Tests. Google Testing Blog.

URL: https://testing.googleblog.com/2015/04/just-say-no-to-more-end-

to-end-tests.html (visited on 10/11/2023).

Member of the Helmholtz Association RSE Summer School, September 24, 2024 Slide 38

	Overview
	Schedule I
	Schedule II
	
	Why to do testing
	Coverage
	Two dimensions

	Distinguish by scope
	Unit tests
	End-to-End tests

	Distinguish by type
	Smoke tests
	Golden master tests

	Popular Frameworks
	

	When to use what
	Scope

	When to use what
	Type

	Examples
	
	file_interaction.py
	main.py
	perform_calculations.py
	How to test them
	test_e2e.py
	test_perform_calculations_gm.py

	Getting things done
	Overview
	Schedule II
	

	Distinguish by scope
	Integration tests

	Distinguish by type
	Property based tests
	Fuzzy tests
	Mutation Tests

	Examples
	
	file_interaction.py
	main.py
	perform_calculations.py
	How to test them
	test_main.py
	test_perform_calculations.py

	Getting things done
	Wrap up
	References

