

Governing Equations					
 Identify the relevant processes, assumptions and constraints Darcy velocity (single-phase flow) 					
$\nu = -\frac{k}{\mu} \left(\nabla p - \rho g \right)$ Driving force	v: Darcy velocity k: permeability µ: fluid viscosity p: fluid pressure				
Mass conservation (fluid advection)	ρ: fluid density α: acceleration due to gravity				
$\frac{\partial(\phi\rho)}{\partial t} = -\nabla \cdot (\nu\rho) + Q$	φ: porosity t: time				
• Energy conservation (conduction + advection)	Q: source term Ht: total enthalpy				
$\frac{\partial H_t}{\partial t} = \nabla \cdot (K \nabla T) + Q_c - \nabla \cdot (\nu \rho_f h_f) + Q_a$	K: thermal conductivity hf: specific enthalpy of the fluid				
GFZ IMPROVE Workshop, Potsdam, 2024 - Ph	ilipp Weis HELMHOLTZ				

Modelling Tools				
 HYDROTHERM (USGS) https://volcanoes.usgs.gov/software/hydrotherm/ 				
 A Computer Code for Simulation of Two-Phase Ground-Water Flow and Heat Transport in the Temperature Range of 0 to 1200 Degrees Celsius 				
 HYDROTHERM INTERACTIVE; PC Windows version 3.2.0 executable, examples (6.4 MB) – With graphical user interface for use on a computer platform running the Microsoft Windows operating system 				
• Other Models: HydrothermalFOAM, Tough2, COMSOL, CSMP++, Fishes				
GFZ IMPROVE Workshop, Potsdam, 2024 - Philipp Weis HELMHOLTZ				

	Ge	neric Set-Up			
Add Rock Properties		Model Options		×	×
Hydrotherm 2D Preprocessor: MOR, Black, Smoker *	Basic	Units Relative Permeability Initial Conditions Time Step Newton-Raphson Solve	r	-	X
	, <u>10, , , 12, , , 14, , , </u>	Initial Pressure Hydrostatic Pressure at domain top (Pa): 2.5E7 Initial Temperature O Enthalpy Temperature Options: Specify graphically V		46 <u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u> 9.2, , ,
1 - 2.0, + 0.0	4	OK Cancel Help			
GFZ Helmboliz Centre POTSDAM	IMPROVE Wo	rkshop, Potsdam, 2024 - Philipp Weis	HE	LMHO	LTZ

