Fluid sampling and interpretation

Solutions in geothermal energy exploitation-Risks and benefits utilizing deep fluids

Simona Regenspurg

28.05.2024

Solutions

Solution (chemistry): homogeneous mixture composed of two or more substances Example aqueous solution: Water as solvent

Geothermal fluid

Hot spring: fluid reservoir is connected by faults and fractures to the surface

- Transported in the the pores and fractures of the geothermal reservoir
- Gas and liquid phase of high pressure and temperature
- Heat carrier for energy supply
- Often very saline with many chemical components

3

GFZ Helmholtz Centre Potsdam

Geochemical risks and benefits utilizing deep fluids

GFZ Helmholtz Centre Potsdam

Fluid ingredients may reveal:

- Origin (geology)
- Age
- History of migration and mixing processe
- Scaling and corrosion risks
- Environmental risks

- \rightarrow Certain elements and isotopes (water and gas)
- → Radioactive deacy products (certain isotopes)
- \rightarrow Certain elements and isotopes
- \rightarrow Components that oversaturate; pH, redox, gasses

6

- \rightarrow Toxic and radioactive components
- Potential value (crm=critical raw materials) → CRM in sufficiently high concentration

Low – and high enthalpy geothermal systems

High enthalpy system

Low enthalpy system

Water rock interactions determine fluid properties:

Surface near groundwater

Meteoric water, low salinity (< 1 g/L TDS)

Rock/ soil	water chemistry
carbonatic	Ca ²⁺ , Mg ²⁺ , HCO ₃ ⁻ , high
aquifers	pH (>8)
Silici-	K⁺ (feldspar
clastic	weathering), pH 4-6

high enthalpy geothermal system

Fluid chemistry: meteoric water/ groundwater (volcanic rock) + gas + very high T → maturity → classification high enthalpy system

Different classification

low enthalpy geothermal system

Fluid chemistry: strong alteration due to old age, great depth →classification low enthalpy sytem

A) High enthalpy geothermal systems

Giggenbach diagram (1988): CI-SO₄-HCO₃ system:

SO

GFZ Helmholtz Centre Potsdam

Surface Manifestation:

visible indication of geothermal activity e.g. hot springs, mudpools, fumaroles, hot steaming ground, rock alterations

Hot spring: geothermally heated groundwater

Mud pot: limited water

Fumarole: steam discharge from a hydrothermal or volcanic system \rightarrow solfatara: sulfur emissions

Indonesia as example of high enthalpy geothermal system

Hot springs sampled by GFZ in Indonesia (Nov 2010)

Sipoholon (North Sumatra)

GFZ

Helmholtz Centre Potsdam

Examples of hot springs sampled by GFZ in Indonesia

After geochemical explorations: geophysical methods \rightarrow e.g. Magnetotelluric

D Inversion of Magnetotelluric Data from the Sipoholon Geothermal Field , Sumatra , Indonesia (2014) <u>Sintia Windhi Niasari, Gerard Muñoz, Oliver Ritter</u>

HELMHOLTZ

GFZ Helmholtz Centre Potsbam

B) Low enthalpy geothermal systems

1. Fluid classification according to the geology of the fluid origin

rocks

sediment basin rock

sandstone

crystalline rock

granite

granite, gneiss, volcanic rock...

- 2. Fluid classification according to the salt content
 - = total dissolved solids (TDS)

TDS (g/L)	classification
< 1	freshwater
1-10	brackish water
10-100	saline water
>100	brine

Examples: Salt content in

- Seawater: 35 g/L
- Dead Sea: 200-300 g/L

Dead Sea

Salinity of geothermal fluids (TDS)

- TDS increases with increasing depth
- Most geothermal fluids are brines →
 high salt content (very corrosive)
- Highest known salt content of a geothermal fluid: Salina formation;
 Michigan Basin: TDS = 643 g/L

Case, 1945

Data from Hanor et al., 2004; Giehse et al., 2002; Wolfgramm et al., 2007; Frape et al., 2004; Pauwels et al., 1993

Why increases the fluid salinity with increasing depth/age?

Fluid History

- 1. Rock formation: porewater in equilibrium with minerals of the formation; Often the sedimentation area is already highly saline (e.g. aride salt pans) → Permische Rotliegendsandsteine
- Fluid mobilization: fluid moves along pores and fractures of the rock due to gravity and/ or given pathways.
- **3.** Reactions of the fluid with the surrounding material \rightarrow new equilibrium
 - dissolution/ precipitation (saturation)
 - redox reactions
 - diagenetic reactions/ mineral transformation

4. Mixing with other fluids or seawater \rightarrow new equilibrium

ROCK

OPEN FRACTURE

HELMHO

final fluid \rightarrow increased salinity (increases with age and depth)

Fluid composition

Main components:

easily dissolvable cations and anions:

Ca, Na, Cl (78 - 98 wt.-% TDS)

HELMHOLTZ

Daten aus Kharaka and Hanor, 2004; Hanor et al., 2004; Giese et al., 2002; Wolfgramm et al.; 2007, Frape et al., 2004

Relevant properties of fluids to be measured

- pressure (p), temperature (T)
- physical parameters: density, viscosity, compressibility, heat conductivity
- chemo-physical parameters: pH-value, redox (E_H-value), electric conductivity
- chemical parameters: cations, anions, undissociated compounds, gases, (isotopes)
- (Organics and microorganisms)

Correct sampling

Avoid contamination Avoid reactions

 \rightarrow clean, oxygen free, particle free, potentialy diluted

Preparation in field

In –situ parameters: • site descirption

- pH
- redox
- electric conductivity
- dissolved oxygen
- bicarbonate
- Fe(II)
- monomeric silica

HELMHOL

T7

Sample preparation:

- Cations
- Anions
- Silica
- Organics
- Microorganisms
- Certain isotopes

Green Field sampling (hot springs; no wells)

1. Site desciption

2. Physicochemical parameters:

Probes for pH, electric conductivity, redox

 \rightarrow Calibrate the pH probe every day!

Fluid properties indicating ongoing chemical processes

Probes: electrochemical measurements / Potentiometric on-line measurement of physico-chemical fluid characteristics

parameter	information/goal
electric conductivity	total salt content (cations and anions)
pH and redox value	Concentration of protons and electrones; redox reactions, speciation
dissolved oxygen	to predict oxidation

High p, T, and ionic strength represent a challenge for all electrodes

2. Reactive phases e.g. Fe(II) and monomeric silica

Field photometer

Lambert-Beer Law

$$A = \varepsilon \cdot c \cdot d$$

 $\boldsymbol{\epsilon} \cdot \boldsymbol{c} \cdot \boldsymbol{d} = -\mathbf{Ig} \, \mathbf{I} / \mathbf{I}_0$

- I_0 : light intensity before passing the sample
 - : measured intensity after
- A : absorption
- ε: absorption constant; addition of a complexing reagent requred

3. Hydrogen carbonate and carbonate ions - titration

- I. Hydrogen carbonate (HCO_3^-) and carbonate (CO_3^{2-}) ions are titrated with hydrochloric acid (HCI) against a mixed indicator.
- II. At the titration end-point (pH 4.3) the color changes to red.
- III. The carbonate hardness (acid capacity) is determined from the consumption of titration solution.

4. Sample preparation

- I. Filtration: 0.45 µm syringe filter
- II. One subsample: acidified: for cation analyis in the lab \rightarrow pH< 2 \rightarrow prevents formation of Fe(III)hydroxide \rightarrow no precipitation
- III. One sample: only filtered for anion analyis → measure as quick as possible
- IV. Organics: store in dark glass (500 mL)
- V. Silica: often oversaturated already → dilute sample1:1 with destilled water
- VI. Microorganisms: sterile filtration (a lot)

VII. Certain isotopes: e.g. ³⁴ S:precipitation as BaSO₄ by adding BaCl₂

Fluid Monitoring (at a geothermal well)

FluMo I (field)

- -Fluid composition
- -density
- -pH-value
- -Redox-potential
- -oxygen
- -electric conductivity
- -P-, T-, volume flow

Chemical parameters: cations of importance

- Na⁺, Ca²⁺: highest concentrated cations in geothermal fluids (highly mobile and due to halite (NaCl) dissolution)
- K⁺, Mg²⁺: less dominant, but important for geothermometer calculation (fluid-rock interaction)
- Fe²⁺, Mn²⁺: redox sensitive (Fe³⁺ Mn⁴⁺), oxidized by O₂, form hardly soluble minerals in presence of oxygen (O₂), carbonates (CO₃²⁻, HCO₃⁻), or sulphide (S²⁻).
- Ba²⁺ and Sr²⁺: form with sulphate hardly soluble barite (BaSO₄) or coelestine (SrSO₄)
- Heavy metals: Pb²⁺, Cu²⁺, Zn²⁺, Hg⁺ usually < 1 mg/l (bound as hardly soluble sulphides); high concentration due to formation of soluble complexes by binding to chlorine, bisulfide or organic matter
- Critial raw materials: Li, Sr, REY, Pt group elements

Chemical parameters: Anions of importance

- Chloride (CI⁻): highest concentrated anions in deep geothermal fluids (50-60 % of TDS in brines) due to low solubility of CI-minerals (very corrosive!)
- Sulphate (SO₄²⁻): usually <1000 mg/l; controlled mainly by anhydrite (CaSO₄) solubility; input: oxidation of sulphides (esp. pyrite, FeS₂), dissolution of sulphate minerals (e.g. CaSO₄), seawater
- Carbonate (CO₃²⁻) and bicarbonate (HCO₃⁻): usually below a few hundred mg/L in solutions of salinities > 30 g/l

→ problem with sulfate and carbonate: facilitated oversaturation and precipitation as $CaSO_4$, (gypsum), $BaSO_4$ (barite), $FeCO_3$ (siderite), $MnCO_3$ (rhodochrosite), or $CaCO_3$ (calcite or aragonite).

Chemical parameters: Silica

Dissloved SiO₂ / silicic acid = $[SiO_x(OH)_{4-2x}]_n$

- concentration: mainly controlled by the solubility of quartz, chalcedon, amorphous silica (use of geothermometer)
- range: 10 to 1000 mg/L
- slow precipitation of amorphous silica → fluids are not in equilibrium → highly oversaturated (mainly in high enthalpy geothermal systems)
- silica precipitation is especially undesired in geothermal plants

Chemical parameters: Organics in geothermal fluids

- 1. Non dissolved organic matter: hydrophobic \rightarrow oil
- 2. Particulate organic matter: > 0.45 μ m \rightarrow clogg filters; transport heavy metals
- 3. Dissolved organic carbon (DOC): few to several thousand mg/L
- mainly mono-and di-carboxylic acids (e.g. acetate, propionate, butyrate, malonate and oxalate) and phenols
- generated by thermal alteration of kerogen (organic residues such as plants)
- acts as proton donor for pH dependent reactions (esp. for microbiol. induced reactions)
 →food for microorganisms

e.g. oxidation of acetate: $CH_3COOH + O_2 \rightarrow 2 CO_2 + 2 H_2\uparrow$

- act as pH-, Eh- buffer
- complexing agent for (heavy) metals \rightarrow keep the complexed metal in solution

Organic content decrease with increasing temperature (low enthalpy geothermal)

Chemical parameters: Gases

Geothermal gas (non condensable gas – NCG): N₂, CO₂, He, CH₄, H₂S, H₂, (O₂)

Gas content

Solubility (λ) of gases in water:

depends on p, T, ionic strength, kind of gas

Importance during production of geothermal fluids: degassing due to pressure change → e.g. CO₂ degassing

Carbonate - carbonic acid - equilibrium

Dissolution of CO_2 in water:

Helmholtz Centre POTSDAM

 $H_2O + CO_2 \leftrightarrow 2H_2CO_3 \leftrightarrow HCO_3^- + H^+$ \rightarrow acid release

In presence of limestone: $H_2O + CO_2 + CaCO_3 \leftrightarrow 2HCO_3^- + Ca^{2+}$

 \rightarrow limestone dissolution

Degassing: $H_2O (+ CO_2) + CaCO_3 \leftrightarrow HCO_3^- + Ca^{2+} + OH^ \rightarrow$ pH increase and calcite precipitation GFZ Prevention of CO₂ degassing

Example: karst formation (stalactite cave)

Geochemical Methods in exploration – geothermometer

Definition: A system that gives evidence on temperatures of the formation or transformation of a phase

Principle: Equilibria of solid and liquid systmes exists only in a certain T-, p- range

Important: Temperatures of melting point, transformation, demixing

Example (mineralogy): SiO₂ transformation

Geothermometers in fluids

Information on the **reservoir temperature** of a fluid, **collected on the surface** of a high enthalpy geothermal system

 \rightarrow Exploration: analysis of water/ gases (hot springs) at pre-drilling state

Principle:

Chemically reactive groups (geoindicators) react in a well understood manner at certain T with the rocks of the reservoir.

Types of geothermometer:

- Silica geothermometer
- Cation geothermometer
- Isotope geothermometer (¹⁸O)
- gas geothermometer

To be considered:

- Debit
- Steam
- pH, salinity

Assumptions for the use:

- Liquid is in equilibrium with relevant hydrothermal minerals in the reservoir
- No mixing of the geothermal liquid with shallow groundwater/ seawater
- No precipitation during the uplift

Problem: often inaccurate; best to apply several geothermometers

Silica (SiO₂) geothermometers

Reaction rates for different silica phases in a hydrothermal system are strongly dependent on T, p, acidity.

- based on T- dependent variations in SiO₂ solubility
- SiO₂ solubility decreases linearly with temperature at T < 340 °C (neutral pH)
- dissolution and precipitation of quartz is fast at high T and slow at low T
- equilibrium/ saturation at high T → Si concentration
 is "frozen" (little change during fast uplift)

Estimating reservoir temperatures

Fournier, 1973, 1991

GFZ Helmholtz Centre POTSDAM

Silica (SiO₂) geothermometers (200 - 300 °C)

quartz no steam loss: T (°C) = (1309/5.19 – log Si) - 273.15

Erroneous results due to the:

 Effects of steam separation, which can concentrate the fluid causing early precipitation of silica.

> quartz, max. steam loss: T (°C) = (1522/5.75 – log Si) - 273.15

- Effects of precipitation after sampling, since the rate of quartz precipitation increases drastically as temperature drops.
- Effect of pH on quartz solubility.
- high salinity fluids, which alter quartz solubility.
- Effects of dilution due to cold water mixing.

Fournier, 1973, 1991

Cation geothermometer

GFZ

Helmholtz Centre

POTSDAM

- Example: Na-K, Na-K-Ca → source: feldspars → mixing ratio depends on T
- Principle: T- dependent ion exchange reactions

Feldspars: 3 types (endmembers):

- Orthoklas/Microcline KAISi
- Albite NaAlSi₃O₈
- Anorthite $CaAl_2Si_2O_8$

Cation geothermometer

- T- dependent ion exchange reactions
 - exchange of Na by K in alkali feldspars:

NaAlSi₃O₈ + K → KAlSi₃O₈ + Na K_{eq} = Na/K → K_{eq} varies little at T < 300°C (linear)

• decrease of the Na-K- ratio with increasing T

 $T (^{\circ}C) = 1390/(1.75 + \log (Na/K)) - 273.15$

(Giggenbach et al., 1988)

Giggebach diagram: Water rock equilibrium temperature

TABLE 4: Selected Geothermometers.

	Geothermometer	Temperature Range (°C)	Sample	Sample	Sample
			BTHN	BTHS-1	BTHS-2
1	Na/K	Fournier (1979)	84	83	102
2	Na/K	Arnórsson et al2 (1983)	89	88	107
3	Na/K	Giggenbach et al. (1988)*	99	101	118
4	Na/K	Verma and Santoyo (1997)	85	87	104
5	Na/K	Arnórsson (2000)	84	85	88
6	Na/K	Can (2002)	103	103	112
7	Na-K-Ca (Mg-Corrected)	Fournier and Potter (1979)	213	211	238
8	Na-K-Ca	Fournier and Truesdell (1973)	136	264	223
9	Na-K-Ca	Kharaka and Mariner (1989)	240	236	281
10	Na-K-Mg	Nieva and Nieva (1987)	86	84	97
11	K ² /Mg	Giggenbach et al. (1988)	64	59	70
12	Quartz	Truesdell (1976)	86	84	84
13	Quartz	No Steam Loss, Fournier (1977)	81	79	81
14	Quartz	Maximum Steam Loss, Fournier (1977)	84	83	83
15	Quartz	Fournier & Potter (1989)	81	81	81
16	Quartz	Fournier & Potter (1989)	80	79	79
17	Quartz	Arnórsson (2000)	66	65	65
18	Quartz	Verma (2000)	72	74	74
19	Chalcedony	Arnórsson et al. (1983)	65	67	67

Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 20151Comparison of Silica and Cation Geothermometersof Bath Hot Springs, Jamaica WIDeBonne N. Wishar

Example Indonesia

Sampling of hot spring water in Java, Mai 2009

	Measured T, surface	Quartz	Mg/Li	Na/Li	Na/K	NaKCa	Estimated reservoir T
	(°C)						(°C)
Reference *	-	(1)	(3)	(4)	(5)	(6)	
Padusan	49.7	162	220	138	318	225	225 ± 10
Cangar	50.4	138	198	16	352	232	140 ?
Songgoriti	46	172	269	194	200	174	190 ± 10
Tiris	38.6	160	249	168	286	219	190 ± 30
Kamojang	68	152	132	85	452	56	100 ± 10

*References:

(1) Fournier, 1977 (3) Kharaka & Mariner, 1989;

(4) Kharaka et al., 1982;

(5) Fournier, 1979 ; (6) Fournier & Truesdell

*Calculations by Francois Vuataz (CREGE/ UNINE)

Mud pool Kamojang

GFZ Helmholtz Centre Potspam

Summary: Geothermometers

- Can be a very useful (quick and cheap) tool to determine temperatures of reservoirs
- but since equilibria are often unknown, it is important to understand
 which geothermometer is applicable for a certain system
- and to compare always several geothermometer calculations

