

Towards physics-based inversions of deformation data

Valérie Cayol, valerie.cayol@uca.fr

Also with Quentin Dumont¹, Marine Tridon¹, Christelle Wauthier², Yo Fukushima³, Adriana Iozzia⁴, Jean-Luc Froger¹, Gilda Currenti⁴

- 1. Laboratoire Magmas et Volcans, Clermont-Ferrand, France
- 2. Pennsylvania State University, Pennsylvania, USA
- 3. International Research Institute of Disaster Science, Tohoku University, Tohoku, Japan
- 4. Instituto Nazionale di di Geofisica e Vulcanologia, Catania, Italy
- 4. European Center for Geodynamics and Seismology, Walferdange, Luxembourg
- 5. National Museum of Natural History, Walferdange, Luxembourg
- 6. Royal Museum for Central Africa, Tervuren, Belgique

1

Why do we model deformation ?

- Where is magma stored ?
- What are the physical and mechanical parameters controlling magma transfer ?
- How do edifices grow and collapse ?

Forward versus inverse models

Classical elastostatic analytic models

InSAR data call for more realistic modelds

Inversions: Definition of a cost-function

• The simplest cost-function :

$$\chi^{2} = \sum_{i=1}^{N} \left(u_{o}^{i} - u_{m}^{i} \right)^{2} = ||\boldsymbol{u}_{o} - \boldsymbol{u}_{m}||^{2}$$

where u_o^i is the ith observed displacement u_m^i is the ith modelled displacements

• Normalized cost function:

$$\chi^{2} = \sum_{i=1}^{N} \frac{\left(u_{o}^{i} - u_{m}^{i}\right)^{2}}{\sigma_{i}^{2}}$$

 σ_i Standard deviation or error on the ith data

• Taking the data correlation into account:

$$\chi^2 = (u_o - u_m)^T C_d^{-1} (u_o - u_m)$$

where C_d is the full covariance matrix

Data point undersampling $\rightarrow u_o$

Inversions : linear versus non-linear inversions

Linear inversions: there is a linear relation between the parameters m and the observations, u_m

 $u_m = Gm$

Exemple: Okada's Model (1985, 1992); Mogi's solution (1958) are linear models

Typically, the location of a source is known, and the amplitude of the source is searched for.

To minimize the cost function: $\chi^2 = ||\boldsymbol{u}_o - \boldsymbol{u}_m||^2 = ||\boldsymbol{u}_o - \boldsymbol{G}\boldsymbol{m}||^2$ We seek \boldsymbol{m} such that : $\frac{\partial \chi^2}{\partial \boldsymbol{m}} = 0$

Which leads to solving a linear system of equations: $\boldsymbol{m} = (\boldsymbol{G}^T \boldsymbol{G})^{-1} \boldsymbol{G}^T \boldsymbol{u}_o$

Pros: fast method **Cons:** the source location has to be knows

Example of a linear inversion: "kinematic" models

Uplift at Sierra Negra volcano in 1998-99 (Galapagos)

$\chi^2 = \|\boldsymbol{u}_{o} - \boldsymbol{G}\boldsymbol{m}\|^2 + \beta^2 \|\boldsymbol{\nabla}\boldsymbol{m}\|^2$, where *m* is the opening vector **Minimization of**

Amelung et al., Science, 2000

Still widely used RESEARCH ART Check for Cite as: Sigmun

Science

Fracturing and tectonic stress drives ultra flow into dikes

Freysteinn Sigmundsson¹*, Michelle Parks², Halldór Geirsson¹, Andrew Hooper³, Vincent Dro G. Ófeigsson², Sonja H. M. Greiner^{1,4,5}, Yilin Yang¹, Chiara Lanzi¹, Gregory P. De Pascale¹, Kristí Valentyn Tolpekin⁷, Hildur María Friðriksdóttir², Páll Einarsson¹, Sara Barsotti²

JGR Solid Earth

RESEARCH ARTICLE 10.1029/2019JB019117

Key Points:

- Imaging multidisciplinary continuous deformation data to improve dike ascent modeling Detailed temporal model of the 2018
- intrusion at Etna volcano

The 24 December 2018 Eruptive Intrusion at Etna Volcano as Revealed by Multidisciplinary Continuous Deformation Networks (CGPS, **Borehole Strainmeters** M. Aloisi¹, A. Bonaccorso¹, F. Cannavò¹, G. Currenti¹, and S. Gambino¹

Inversions : linear versus non-linear inversions

Non-linear inversions: there is a non-linear relation between the parameters m and the observations, $u_m = G(m)$

The link between the source location, orientation parameters and the ground displacement is a non linear relation.

To minimize the cost function: we can use different methods

$$\chi^{2} = \|\boldsymbol{u}_{o} - \boldsymbol{u}_{m}\|^{2} = \|\boldsymbol{u}_{o} - \boldsymbol{G}(\boldsymbol{m})\|^{2}$$
,

Pros: adapted to non-linear inversion

Cons: slow

Non-linear inversion to capture source geometries

Radial intrusion in 2009 at Fernandina volcano (Galapagos)

Bagnardi et al., EPSL, 2013

What can be learnt from analytic and kinematic models ?

Characteristics of reservoirs

Amelung et al., Science, 2000

Analytic and kinematic models require many parameters

• To better capture openings: linear inversion of 77 parameters

Uplift at Sierra Negra volcano in 1998-99 (Galapagos)

Amelung et al., 2000

• To better capture complex geometries: non linear inversion of 22 parameters

Radial intrusion in 2009 at Fernandina volcano (Galapagos)

Why should large numbers of parameters be avoided ?

• The probability of finding the best-fit solution decreases with the dimension of the search space ;

Tarantola, Inverse Problem Theory, 2005

- With non linear inversions, the search time increases exponentially with the number of parameters ;
- There is a risk of overfitting the data.

Use of Akaike Information Criteria

AIC = $2^{k} + \chi^{2} + cst$ with k = Nb parameters and χ^{2} = cost-function

3D Mixed Boundary Elements

Cayol et Cornet, Int. J. Rock Mech. Min. Sc., 1997; Cayol and Cornet, JGR, 1998; Cayol et al., JGR 2014

3D Numerical method:

- Realistic topographies;
- > Any number and geometry of fractures and pressure sources;
- > Treats more than one source appropriately (interactions are taken into account); Assumptions:
 - > intrusions, faults, reservoirs are submitted to constant stress changes;
 - Fractures may be curved.

Combined with Non-linear inversions relying on a Neighborhood Algorithm

Fukushima et al., JGR,2005

Near-neigborhood non-linear inversion (*Sambridge, JGI, 1999a*) **to invert for geometrical parameters**

- Linear inversions of pressure;
- Appraisal of model using Bayesian inference → confidence intervals and trade-offs between parameters (Sambridge, JGI, 1999b)
- Available to registered used at http://www.opgc.fr/defvolc

Topography is taken into account

Topographies have an influence of computed displacements

Etna, 1992-1993 eruption, Massonnet et al., Nature, 1995

Cayol and Cornet, GRL, 1998

Neglecting topographies bias results : volume errors, depths errors

Crozier et al., Bull. Volc., 2023

Boundary conditions are homogeneous stress

Stress boundary conditions leads to better models

AIC = $2^{k} + \chi^{2} + cst$ with k = Nb parameters and $\chi^{2} = (u_{0} - u_{m})^{T}C_{d}^{-1}(u_{0} - u_{m})$

Pressure boundary condition

Displacement boundary condition

Inverting for stress leads to better models than inverting for dislocation amplitudes

Models with stress boundary conditions are closer to the physics

Stress change inversion as crustal stress gauge

22

(Ebinger, Astronomy and Geophysics, 2005)

Nyiragongo 2002 and 2021 eruption Democratic Republic of the Congo

• A strato-volcano with a crater lava lake

- Three historical eruptions in 1977, 2002 and 2021
- Associated fissures trend NS

Model for Nyiragongo 2002 eruption (Wauthier et al., JGR, 2012)

• The deep dike is perpendicular to the rift extension direction \implies Injection direction guided by the rift extension

The may 2021 eruption confirms the small overpressure

A magma-assisted rift rextension

Ebinger, Astronomy and Geophysics, 2005

Stress change inversion for flank failure mechanisms

Flank failures at Réunion Island

- Induce 24 % of volcano casualties (tsunamis and large earthaquakes)
- Ubiquous at Réunion Island

47 flank failure events Largest 100 km³ Oldest 2 My

Piton de la Fournaise is one of the best monitored volcanoes

• since 1998, 57/59 intrusions imaged by at least one InSAR data

• GNSS campain + continuous data can be used for non imaged eruptions

An unusual flank displacement in 2007

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

An unusual flank displacement in 2007

Co-eruptive displacement

Froger et al., JVGR, 2015

Chen et al., Rem. Sens. Envir., 2017

1-2 cm/yr eastward and subsidence

0.5 m E

Origin of the 2007 flank displacement

Inversion of geometry and stress changes for the co-eruptive displacement

Tridon et al., IAVCEI, 2017

Inversion of 8 geometrical parameters + a pressure and a shear stress change

85% of displacement explained

Displacements are characteristic of a detachment fold

Dumont et al., Nature Communication, 2023 ; EPSL, 2024

80% of the magma intrudes in a spoon-shaped collapse structure

A major spoon-shaped collapse structure

Dumont et al., Nature Communication, 2023 ; EPSL, 2024

Continuum of displacements from west to east:

- Pure opening of subvertical curved dykes
- Curved sheared sills
- Fault slip in the easternmost part (in 2007)
- Hybrid between previously assumed models;
- Could accommodate flank failure

A similar structure may be active at Etna as evidence by the 2018 Christmas event

- A curved sheared intrusion and a buried dyke explain displacement close to the summit;
- Pernicana fault responded passively; Fiandaca fault released accumulated stress; 39

What can be learnt from the Inverse modelling of InSAR data? **Rift extension drive**

Characteristics of reservoirs

Amelung et al., Science, 2000

Flank slip mechanism

Dumont et al., Nat. comm., 2022.

Conclusions

- Inverting for stress changes:
 - is more physical than kinematic inversions;
 - > leads to more likely models;
 - > is more informative.
- In the Virunga Volcanic Province, the rift extension is driven by magmatic activity rather than plate extension;
- At Piton de la Fournaise, we find a continuum of fracture displacement: dike intrusion -> sheared intrusions -> fault slip that accommodates magma intrusions;
- Sheared intrusions also seem to be active at Etna.
- Sheared intrusions should be searched at other shield volcanoes with evidence of flank slip

Thank you for your attention !

Quentin Dumont

Christelle Wauthier

Yo Fukushima

Marine Tridon

Gilda Currenti

Adriana lozzia

May, 2024 Improve Training network, Potsdam