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Today’s Agenda

1. Uncertainties!
2. Predictive Uncertainties

MCDropout
Uncertainty Calibration
DeepEnsembles

3. Use Case: Predictive Uncertainties for
Instance Segmentations
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Uncertainties!
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What is Uncertainty?

Definition (Merriam-Webster today)
uncertainty: not known beyond doubt, not having certain knowledge, not clearly
identified or defined, not constant, indefinite, not certain to occur, not reliable

Definition (Wikipedia today)
Uncertainty refers to epistemic situations involving imperfect or unknown information. It
applies to predictions of future events, to physical measurements that are already made,
or to the unknown. Uncertainty arises in partially observable or stochastic environments,
as well as due to ignorance, indolence, or both.
likely from (Russell & Norvig, 2010)

…
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Uncertainties in ML for Science (Tan et al., 2023)
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Uncertainties: a paradigm shift in the ML community
Let’s say I have data and I fit a linear model to predict y from x. …So that

would be the predictive take. The inferential take would be: can I say something
about which features are significant in this (linear) model? Can I actually give
under some assumptions a confidence interval for their coefficient in the linear
model and so on.

In statistics, we think of these as like two very big areas of research. And
maybe historically, actually inference has been even bigger than prediction. And
in machine learning, it’s exactly the opposite: So prediction dominates, inference
is tiny.

And historically in machine learning, inference may have been very, very small.
And now I think it’s grown in a way that people do talk about inference, they
use the word uncertainty quantification. They don’t think about inference and
typically in the traditional way statistically. But I think it has somehow emerged
as maybe more of a focus.

Ryan Tibshirani in “The Gradient Podcast”, see here for the full interview.
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Origins of Uncertainty in ML 1/3

Supervised Machine Learning

dataset D = {(x⃗0, y0), (x⃗1, y1), ..., (x⃗N , yN)} ⊂ X × Y
X …instance space
Y …outcomes associated with instance

each sample of D is considered an i.i.d. sample
given a hypothesis space H (with h : X → Y) and
given a loss function l : X × Y → R
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Origins of Uncertainty in ML 2/3

i.i.d. dataset D
{(x⃗0, y0), ..., (x⃗N , yN )}

hypothesis space
H, h : X → Y

loss function
l = f(h(x), y))

Learner Goal
To induce a hypothesis h∗ ∈ H with low
risk R(h):

R(h) :=
∫

X ×Y
l(h(x), y)dP (x, y)

Learner Guesses
a good hypothesis h guided by the
empirical risk Remp(h):

Remp := 1
N

N∑
i=1

l(h(xi), yi)

Remp only estimates R!

h∗ := arg minh∈H R(h) will not coincide with ĥ := arg minh∈H Remp(h)
uncertainy created! what is h∗? How close is ĥ to h∗? What is R(ĥ)?
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Wrap-Up Origins of Uncertainty (Hüllermeier & Waegeman,
2021)

Central Point of Interest: Predictive Uncertainties
(uncertainty for yq = ĥ(xq) for a concrete instance xq ∈ X )
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Predictive Uncertainties
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A historic view on Uncertainty sources

Aleatoric or
Data related uncertainty
(uncertainties from noise in the data,
does not decrease with more data)
Epistemic or
Model related uncertainty
(uncertainties related to finding the
best hypothesis, can be reduced with
more data)
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Obtaining (epistemic) Uncertainties (Gal & Ghahramani, 2016)

Monte Carlo Dropout

x⃗

Model
(dropout at inference)

ŷ1ŷ0 … ŷn

E[{ŷ0, . . . , ŷn}] σ({ŷ0, . . . , ŷn})

E[ŷ|x⃗] ± σ(ŷ|x⃗)

model set up including dropout layers

dropout layers set random portions
of weights to 0.
(implicit regularisation during
training)
trick: keep dropout enabled during
prediction and call model.predict
multiple times
allows to sample the PDF describing
ŷ
(weights of model disabled randomly)
obtain mean prediction E[ŷ] and
prediction deviation σ(ŷ) for each
input
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ŷ
(weights of model disabled randomly)
obtain mean prediction E[ŷ] and
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Try MCDropout for yourself

Please open
mcdropout_1D_regression_vanilla.ipynb!

Go through the notebook.
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Dropout Recap

from jonascleveland.com

MCDropout approximates a
Bayesian Neural Network
(BNNs are computational
intensive)

average across possible
network configurations
(enable Dropout layers during
inference)
perform Bayesian Model
Averaging
see (Gawlikowski et al., n.d.) for
details
epistemic uncertainties
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Diagnosing a UQ method: Calibration Curves
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How to judge predictive uncertainties? (Kuleshov et al., 2018)

At Inference, we have
a label ytest

a prediction E[ytest] (by our model)
an uncertainty for that prediction σytest (from the UQ method)

Assumption

E[ytest] and σytest model a gaussian distribution around ytest
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Calibration in a nutshell (Kuleshov et al., 2018)
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Calibration in a nutshell (Kuleshov et al., 2018)

Note: only sufficient criteria for uncertainty quality (Levi et al., 2020)!
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Obtaining Uncertainties in Ensembles (Lakshminarayanan et al., 2017)

Deep Ensemble?

x⃗

Model1Model0 … ModelT

ŷ1ŷ0
…

ŷT

E[{ŷ0, . . . , ŷn}] σ({ŷ0, . . . , ŷn})

E[ŷ|x⃗] ± σ(ŷ|x⃗)

use existing model and training loop

train T models (different seeds)
trick: for each x⃗ get one prediction
from each model
obtain mean prediction E[ŷ] and
prediction deviation σ(ŷ)
epistemic uncertainty

Our nickname: “Simple Ensembles”!
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use existing model and training loop
train T models (different seeds)
trick: for each x⃗ get one prediction
from each model
obtain mean prediction E[ŷ] and
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use existing model and training loop
train T models (different seeds)
trick: for each x⃗ get one prediction
from each model
obtain mean prediction E[ŷ] and
prediction deviation σ(ŷ)
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Try Simple Ensembles for yourself

Please open simpleensembles_1D_regression_vanilla.ipynb!
Go through the notebook.
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Obtaining Uncertainties in Ensembles (Lakshminarayanan et al., 2017)

Deep Ensemble!

x⃗

Model1Model0 … ModelT

ŷ1 σ(ŷ1)ŷ0 σ(ŷ0) …
ŷT σ(ŷT )

lnll = − log p = log σ(ŷ)2

2
+ 1

2
(y − ŷ)2

σ(ŷ)2

Eens[yn] = 1
T

T∑
t=0

ŷt

σens[yn] = 1
T

T∑
t=0

(σ(ŷt)2 + ŷ2
t ) − Eens[yn]2

use expanded model to predict
expectation and std deviation
(mean variance estimation, MVE)
train T models (different seeds)
trick: for each x⃗ get one prediction
and one sigma from each model
allows to learn model of aleatoric
uncertainty (MVE)
ensemble allows to assess epistemic
uncertainty
but: different loss, different model

These are “Deep Ensembles”!
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ŷT σ(ŷT )

lnll = − log p = log σ(ŷ)2
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t ) − Eens[yn]2

use expanded model to predict
expectation and std deviation
(mean variance estimation, MVE)
train T models (different seeds)

trick: for each x⃗ get one prediction
and one sigma from each model
allows to learn model of aleatoric
uncertainty (MVE)
ensemble allows to assess epistemic
uncertainty
but: different loss, different model
These are “Deep Ensembles”!

Peter Steinbach, Till Korten, Sebastian Starke, Steve Schmerler Uncertainty Quantification in Machine Learning

mailto:p.steinbach@hzdr.de


19/31

Obtaining Uncertainties in Ensembles (Lakshminarayanan et al., 2017)

Deep Ensemble!

x⃗

Model1Model0 … ModelT
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2
+ 1

2
(y − ŷ)2
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ŷt

σens[yn] = 1
T

T∑
t=0
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ŷT σ(ŷT )
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Try Deep Ensembles for yourself

Please open
deepensembles_1D_regression_vanilla.ipynb!

Go through the notebook.
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Well Calibrated Uncertainties with DeepEnsembles
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Use Case: Predictive Uncertainties for
Instance Segmentations
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Instance Segmentation Task

Input

(Hessenkemper et al., 2022)

Labels

goal: accurate spatial prediction adding uncertainty = reliable and
robust prediction
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Instance Segmentation Tooling: StarDist
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Obtaining Uncertainties for StarDist (Siddiqui et al., 2023)

ensemble predictions
provide multitude of labels

clustering for
homogenous instance

labels

calibrated certainty
scores by region of most

overlap
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Informed Predictions with Uncertainties and Calibration Plots

benign segmentation
(bubble segmentation)

malignant segmentation
(gland tumor cell segmentation)

(Siddiqui et al., 2023)
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Summary

uncertainties express variability in Machine Learning
predictions (induction, limits of dataset)

uncertainties should become first class citizens in Machine
Learning
established methods for obtaining predictive uncertainties
(MCDropout, SimpleEnsembles, DeepEnsembles)

depending on UQ method chosen, uncertainties refer to different
things
(epistemic vs aleatoric uncertainties for example)

Thank you for your attention!
Looking forward to questions, feedback and comments.
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Appendix
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Derived Uncertainties
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High Demand for Reviewing

adapted from Xin (2022)

International Conference
on Learning
Representations 2022
(2023)

accepted/submitted
1095/3328 (1574/4956)
acceptance rate
32.9% (32.0%)
54 (91) orals
176 (280) spotlights
865 (1203) posters
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State-of-the-Art, SOTA

from Liu et al. (2022)

from Tomasev et al. (2022)

SOTA = (uncertified) reference to check for
progress
accuracy often a central figure of merit
difference in accuracy small O(1%)Peter Steinbach, Till Korten, Sebastian Starke, Steve Schmerler Uncertainty Quantification in Machine Learning
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A classification SOTA for demonstration

image classification on imagenette (Howard et al., 2022)

…

Figure 1 (a):
Accuracy estimates
on 10-class image
classification for
three different ML
architectures. Taken

from (Steinbach et al., 2022)
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Accuracies with Uncertainties from Cross-Validation

Figure 1 (b): Accuracy estimates on 10-class image classification for three different
ML architectures. Point estimates and confidence intervals obtained from 20-fold

cross validation is shown. Taken from (Steinbach et al., 2022)
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Approximated Uncertainties σ̂

Approximate Accuracy as a Bernoulli probability

µACC ± σ̂ACC = µACC ± z

√
1

nholdout
ACCholdout (1 − ACCholdout)

In the limit of large numbers, this converges to a normal distribution. Use z to construct
confidence interval assuming normality.

Figure 5: Comparison of fold sample
based uncertainty with approximated
uncertainty using eq. (1) (Raschka,
2018). Each estimate was obtained for
one seed (42) or any seed available
(total 6 seeds). The uncertainty plotted
for seed 42 was obtained using the
approximation in eq. (1). The
uncertainty plotted for all seeds was
obtained using the sample standard
deviation. Taken from (Steinbach et al., 2022)
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How Do Vision Transformers Work? (Park & Kim, 2022)

Figure 2: Reproduction of figure 12a from Park & Kim (2022) (left).
Augmentation of the same figure with estimated accuracy calculated using
eq. (1) using a one-sigma 68.2% (colored) and two-sigma 95% (grey)
confidence interval (right). Data to reproduce these figures was obtained
by using Rohatgi (2021) on the figures from the preprint PDF. Taken from

(Steinbach et al., 2022)
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More Sources of Variance

Figure 1 of (Bouthillier et al., 2021): Different sources of variation of the
measured performance: across our different case studies, as a fraction of
the variance induced by bootstrapping the data. For hyperparameter
optimization, we studied several algorithms.

Peter Steinbach, Till Korten, Sebastian Starke, Steve Schmerler Uncertainty Quantification in Machine Learning

mailto:p.steinbach@hzdr.de


10/10

Takeaways: Let’s “increase the quality of evidence”1

uncertainties are essential
(strong hint for communicating and reviewing academic results)

uncertainties can be laborious
(cross-validation, running training multipe times)

approximations for uncertainties provide a solution with
minimal runtime cost

See (Steinbach et al., 2022) for more details!

1G. Varoquaux at ICLR’s ML Eval workshop 2022
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