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Uncertainty Quantification in Deep Learning

Planning of the tutorial

Planning of the tutorial

30 min - Efficient Ensemble presentation
20 min - Efficient Ensemble hands on with TorchUncertainty
20 min - Pause
30 min - Bayesian Neural Network presentation
45 min - Bayesian Neural Network hands on with TorchUncertainty
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Uncertainty Quantification in Deep Learning
Why do we need Uncertainty Quantification?

Why Quantify Uncertainty in Deep Neural Networks?

Context

Deep Neural Networks (DNNs) have achieved remarkable success in
various applications, but their predictions are not infallible.
Recognizing and quantifying uncertainty is crucial for enhancing the
reliability and trustworthiness of DNNs.

Motivation
Real-world Consequences: In critical applications such as
healthcare or autonomous systems, incorrect predictions can have
severe consequences.
Decision-Making: Users and decision-makers need to understand
the confidence levels associated with DNN predictions.
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Uncertainty Quantification in Deep Learning
Why do we need Uncertainty Quantification?

Types of Uncertainty in Machine Learning

Aleatoric Uncertainty
Data Uncertainty: Arises from inherent variability in the data. It can be
further classified into homoscedastic (constant variance) and
heteroscedastic (varying variance) uncertainty.

Measurement Uncertainty: Associated with errors in the measurement
process, impacting the reliability of observed data.

Epistemic Uncertainty
Model Uncertainty: Arises from a lack of knowledge about the true
model structure. It can be reduced with more data and better model
architecture.

Inherent Model Limitations: Uncertainty arising from the inability of the
model to capture all relevant aspects of the underlying data distribution.

Parameter Uncertainty: Related to uncertainty in the values of model
parameters, often addressed through techniques like Bayesian modeling.
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Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Uncertainty Quantification Strategies
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Uncertainty Quantification in Deep Learning
Uncertainty Quantification and classical BNN

Single Network Methods

Notations
We consider that we have a training dataset
D ..=

{
(x1, y1), . . . , (xN , yN)

}
⊂ X × Y ,

(xi , yi ) are assumed i.i.d. according to some unknown probability measure
PX×Y on X × Y
We denote fω(x) the prediction a DNN model with weights ω. We
consider that fω(x) = P(y |x ,ω)

Maximum Likelihood Estimation for Classification
Our goal is to find ω that maximizes the Likelihood P(D|ω).
Let us consider the case of i.i.d. samples from the conditional distribution.
Then, we can write the likelihood function of ω:

ω = argmax
ω

P(D|ω) ≈ argmax
ω

N∑
i=1

logP(yi |xi ,ω) (1)

6 / 62



Uncertainty Quantification in Deep Learning
Uncertainty Quantification and classical BNN

Ensemble Methods

Ensemble Methods Overview

Ensemble Methods Overview
Ensemble methods combine multiple base models to create a
stronger, more robust predictive model.
They are widely used to improve generalization and performance in
various machine learning tasks.
Can be used to quantify the uncertainty
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Uncertainty Quantification and classical BNN

Ensemble Methods

Ensemble Methods Overview

Ensemble Methods Overview

Bagging (Bootstrap Aggregating): Involves training multiple
instances of the same model using different subsets of the training
data and averaging their predictions.
Random Forests: Adapts the traditional random forest concept to
neural networks, creating an ensemble of decision trees or models.
Boosting: Sequentially trains multiple weak learners, giving more
weight to misclassified instances in each iteration to improve overall
model performance.
Stacking: Involves training multiple diverse models and combining
their predictions using another model (meta-learner).
Dropout: During training, it randomly drops out neurons,
effectively training an ensemble of slightly different models
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Uncertainty Quantification in Deep Learning
Uncertainty Quantification and classical BNN

Ensemble Methods

Ensemble Methods Overview

Ensemble Methods Overview
Snapshot Ensembles: Involves saving multiple snapshots of a
model during training and using these snapshots as an ensemble for
making predictions.
Bayesian Neural Networks (BNNs):Introduces uncertainty by
treating weights as probability distributions, providing a Bayesian
approach to ensembling.
Deep Ensembles: It ensembles multiple independently trained
neural networks to improve generalization and reduce overfitting.
Weak Ensembles: Methods that extend the ensemble concept to
the batch dimension during training, and that ensemble smaller
DNNs.
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Uncertainty Quantification and classical BNN

Ensemble Methods

Motivation for Ensemble Methods
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Uncertainty Quantification and classical BNN

Ensemble Methods

Deep Ensembles (DE) [3]

The authors of DE [3] propose to average the predictions of several
DNNs with different initial seeds:

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ωj(t∗), x∗) (2)
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Uncertainty Quantification and classical BNN

Ensemble Methods

Deep Ensembles [11]

Figure: t-SNE plot of predictions from checkpoints corresponding to 3 different
randomly initialized trajectorie
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Uncertainty Quantification and classical BNN

Ensemble Methods

Deep Ensembles [11]

Figure: Diversity versus accuracy plots for 3 models trained on CIFAR-10
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Uncertainty Quantification and classical BNN

Ensemble Methods

Overview of Weak Ensemble Methods

Overview of Weak Ensemble Methods
While Deep Ensemble is frequently considered state-of-the-art
(SOTA), it comes with significant computational demands.
Weak Ensemble methods offer a faster alternative to achieve
comparable results.
Weak Ensemble methods can be performed on a reduced dataset,
or/and with fewer neurons, or/and for a shorter duration.
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Uncertainty Quantification and classical BNN

Ensemble Methods

BatchEnsemble Overview [6]

What is BatchEnsemble?
Definition: BatchEnsemble is an ensemble learning technique
designed for improving the performance and robustness of neural
networks.
Inspiration: Inspired by ensemble methods, BatchEnsemble extends
the concept to the batch dimension during training.

How BatchEnsemble Works
Batch-Level Ensembling: Instead of ensembling models across
different training runs, BatchEnsemble ensembles within the same
training batch.
Variability Across Batches: Introduces diversity by training
multiple instances of the model within each batch, enhancing
robustness.
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Uncertainty Quantification and classical BNN

Ensemble Methods

BatchEnsemble Overview [6]

They [6] propose to approximate the average of the predictions of several
DNN with different initial seeds by using a DNN with two king of
weights. For simplicity is the ω has two set of weight ωslow , ωfast

For simplicity let us consider a DNN with just one fully connected layer
and let us write ω = {ωj}Nmodel

j=1 = {Wj}Nmodel
j=1 and ωslow = W and

ωslow = {Fj}Nmodel
j=1 . We have Wj = W · F = W · (rjstj )

Figure: An illustration on how to generate the ensemble weights for two
ensemble members
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Uncertainty Quantification and classical BNN

Ensemble Methods

BatchEnsemble Overview [6]

We have a set of weight Wj = W · F = W · (rjstj ) with W that sees all
images and (rjs

t
j ) that does not see all the same images. If we denote ϕ

an activation function then when we apply the BatchEnsemble on an
image we perform:

y = ϕ
(
W t

j x
)
= ϕ

(
(W t · (rjstj ))tx

)
= ϕ

(
(W t(x · rj) · sj)

)
Similarly to Deep Ensembles, to perform inference we just perform
ensembling :

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ωj , x
∗) (3)

Figure: An illustration on how to generate the ensemble weights for two
ensemble members
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Uncertainty Quantification and classical BNN

Ensemble Methods

MIMO Overview [12]

What is MIMO?
Definition: MIMO stands for Multiple Input Multiple Output .
Objective: MIMO aims to utilize a single model’s capacity to train
multiple subnetworks that independently learn the task at hand.
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Uncertainty Quantification and classical BNN

Ensemble Methods

Key Concepts of MIMO [12]

How MIMO Works
MIMO principle: The lottery ticket hypothesis shows that one can
prune away 70-80% of the connections in a DNN without adversely
affecting performance
MIMO Idea:The basic Idea is that a neural network has sufficient
capacity to fit 3-4 independent subnetworks simultaneously. Hence
they just need to modify the input and output to handle this 3-4
subnetworks.
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Ensemble Methods

Key Concepts of MIMO [11]

c l a s s MIMOModel( nn . Module ) :
d e f __init__( s e l f , hidden_dim : i n t = 784 , ensemble_num : i n t = 3 ) :

supe r (MIMOModel , s e l f ) . __init__ ( )
s e l f . i n pu t_ l a y e r = nn . L i n e a r ( hidden_dim , hidden_dim ∗ ensemble_num )
s e l f . backbone_model = BackboneModel ( hidden_dim , ensemble_num )
s e l f . ensemble_num = ensemble_num
s e l f . ou tpu t_ laye r = nn . L i n e a r (128 , 10 ∗ ensemble_num )

de f f o rwa rd ( s e l f , i npu t_ten so r : t o r c h . Tensor ) :
i npu t_ten so r = inpu t_ten so r . t r a n s p o s e (1 , 0 ) . v iew (

batch_s ize , s e l f . ensemble_num , −1)
# ( batch_s ize , ensemble_num , hidden_dim )
i npu t_ten so r = s e l f . i n pu t_ l a y e r ( i npu t_ten so r )
# ( batch_s ize , ensemble_num , hidden_dim ∗ ensemble_num )
# usua l model f o rwa rd
output = s e l f . backbone_model ( i npu t_ten so r ) # ( batch_s ize , ensemble_num , 128)
output = s e l f . ou tpu t_ laye r ( output ) # ( batch_s ize , ensemble_num , 10 ∗ ensemble_num )
output = output . r e shape (

batch_s ize , ensemble_num , −1, ensemble_num
) # ( batch_s ize , ensemble_num , 10 , ensemble_num )
output = to r ch . d i a g on a l ( output , o f f s e t =0, dim1=1, dim2=3). t r a n s p o s e (2 , 1)

# ( batch_s ize , ensemble_num , 10)
output = F . log_softmax ( output , dim=−1) # ( batch_s ize , ensemble_num , 10)
r e t u r n output
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Ensemble Methods

Key Concepts of MIMO [12]

Figure: The multi-input multi-output (MIMO) configuration, the network takes
M = 3 inputs and gives M outputs [12]
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Ensemble Methods

Packed-Ensembles Overview [13]

Seamless training of ensembles with Packed-Ensembles

Definition: Packed-Ensembles estimate the posterior distributions
restraining their support to smaller networks in a computationally
efficient manner with grouped convolutions.
Objective: Get the benefits of deep ensembles with reduced costs.

x1

ŷ1

x1

ŷ1 ŷ1

x1
M = 3 M = 3

width α × widthwidth

a) b) c)

γ = 2

Figure: Left: A standard network, Center: A deep ensembles, Right: The
corresponding Packed-Ensembles
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Ensemble Methods

How well does Packed-Ensembles perform? [13]

Performance of Packed-Ensembles
Performance: For sufficiently large networks, Packed-Ensembles is
equivalent to deep-ensembles in performance and UQ.
Computational efficiency: Use Packed-Ensembles with float16 to
benefit from grouped-convolutions better.
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Figure: Performance (accuracy) wrt. the image throughput
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Ensemble Methods

Sources of stochasticity in deep ensembles [13]

Figure: Impact of the three sources of stochasticity, non-deterministic backdrop.
kernels (ND), different initialization (DI), and different batches (DB).

Uncertainty-sources are equivalent!

No source of stochasticity during training seems to single out. Having
one source is sufficient, and adding more does not seem to affect the
performance or the quantitative functional diversity (Mutual information).
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Uncertainty criteria

Quantifying Uncertainty in DNNs

Criteria for Uncertainty Assessment

Single DNN:
Maximum Class Probability (MCP):

maxk⊂YP(Y = k|x ,w)
Higher MCP implies higher confidence, while lower MCP indicates
increased uncertainty.

Entropy:
H(P(Y |x ,w)) := −

∑
k∈Y P(Y = k|x ,w) logP(Y = k|x ,w))

Higher entropy signifies higher uncertainty as it reflects a more
uniform distribution of probabilities. (related to aleatoric uncertainty)

Ensemble of DNNs:
Maximum Class Probability (MCP): Similar to single DNN, but now
considering the MCP across the marginalized distribution
P(Y = k|x) =

∫
P(Y |X ,ω)P(ω|D)dω.

Entropy: H(P(Y |x)) := −
∑

k∈Y P(Y |x) logP(Y |x))
Mutual Information: Measures the shared information between
predictions of individual models, offering insights into epistemic
uncertainty: I (Y |x) = H(P(Y = k|x))− EP(ω|DH(P(Y = k|ω, x))
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Evaluating Uncertainty Quantification in DNNs

Evaluating Uncertainty Quantification in DNNs

Evaluating Uncertainty in DNNs

Evaluating the quality of Uncertainty quantification is crucial for
reliable deep learning models.
We distinguish between aleatoric uncertainty, epistemic uncertainty,
and distribution shift, each requiring specific evaluation metrics.
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Evaluating Uncertainty Quantification in DNNs

Introduction to ECE

Expected Calibration Error (ECE) for classification

Definition: The Expected Calibration Error (ECE) is a metric used
to assess the calibration of predicted probabilities in classification
tasks.
Importance: Calibration is crucial for models that provide
probability estimates, ensuring that predicted confidence scores align
with actual outcomes.
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Introduction to ECE

ECE Formula and Interpretation

Formula: We begin by partitioning the data into m bins based on
the confidence scores of the DNN predictions. Bi represents the
collection of samples whose predicted probabilities fall within the i-th
bin.

ECE =
m∑
i=1

|Bi |
N

· |accuracy(Bi )− confidence(Bi )|

Interpretation:
A perfectly calibrated model has ECE = 0, indicating precise
alignment between predicted and actual probabilities.
Higher ECE values suggest miscalibration, revealing discrepancies
between predicted confidence and true outcomes.
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Introduction to ECE

ECE: Usage and Considerations

Usage:
ECE provides a global measure of calibration across the entire range
of predicted probabilities.
Visualization through a reliability diagram aids in understanding
calibration performance.

Considerations:
ECE is sensitive to bin sizes; proper binning is crucial for meaningful
results.
Lower ECE values indicate better-calibrated models with more
accurate confidence scores.
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Aleatoric Uncertainty Evaluation (Classification)

Quantifying Aleatoric Uncertainty (Classification)

Negative Log Likelihood (NLL): Measures the likelihood of the
true class under the predicted probability distribution.
Expected Calibration Error (ECE): Measures the calibration of
predicted probabilities against true outcomes.
Accuracy: Essential for assessing the correctness of predictions.
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Epistemic Uncertainty Evaluation (Classification)

Quantifying Epistemic Uncertainty (OOD Detection)

Quantifying Epistemic Uncertainty is hard so often we consider just
Out-of-Distribution (OOD) Detection.
Out-of-Distribution (OOD) Detection: Evaluates the model’s
ability to detect samples outside the training distribution.
Transform to 2-Class Classification: Detecting ID vs. OOD
samples, based on DNN confidence scores.
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Epistemic Uncertainty Evaluation (Classification)

Quantifying Epistemic Uncertainty (metrics)

We use metrics for binary classification assessment:
AUROC (Area Under the Receiver Operating Characteristic Curve):
Measures the trade-off between true positive rate (sensitivity) and
false positive rate (1-specificity) across different probability
thresholds. A higher value (closer to 1) indicates better performance.
AUPR (Area Under the Precision-Recall Curve): Focuses on the
precision-recall trade-off, emphasizing positive class prediction
performance, especially in imbalanced datasets. A higher value
(closer to 1) indicates better performance.
FPR95 (False Positive Rate at 95% True Positive Rate): Evaluates
the model’s performance at a high sensitivity level (95% true positive
rate). A lower value (closer to 0) indicates better performance.
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Key Takeaways

Summary of Insights

Understanding Sources: We explored various sources impacting
DNNs, acknowledging the inherent uncertainties.
Distinguishing Types: The distinction between aleatoric and
epistemic uncertainty provided clarity on different uncertainty
manifestations.
Quantification Techniques: We delved into diverse methods for
quantifying uncertainty in DNNs.
Evaluation Approaches: Different techniques for evaluating the
effectiveness of uncertainty quantification were discussed.
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Practical session

Link to the third practical session: https://drive.google.com/file/
d/1lmjpNy1UAwLzdAZivD91m-dQW9KBlLSa

Short link: https://tinyurl.com/HelmHUQ1
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Bayesian Neural Networks

Maximum Likelihood Estimation for classification

The Goal of DNN is to find P(y |x ,ω), most of the classic approaches
find ω that maximizes the likelihood.

ω = argmax
ω

logP(D|ω) (4)

ω = argmax
ω

N∑
i=1

logP(yi |xi ,ω) (5)

ω = argmax
ω

1/N
N∑
i=1

logP(yi |xi ,ω) (6)

ω = argmax
ω

E(x,y)∼P(D) logP(y |x ,ω) (7)

ω = argmin
ω

H [P(D),P(y |x ,ω)] (8)

With H, the cross entropy.
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Bayesian Neural Networks

Bayesian approach and DNN

The Goal of DNN is to find P(y |x ,ω). In the classic Bayesian approach,
we find ω such that we have the maximum a posteriori (MAP).

ω = argmax
ω

logP(ω|D) (9)

ω = argmax
ω

logP(D|ω) + logP(ω) (10)

This leads to L2 regularization.
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Bayesian Neural Networks

Bayesian Deep Neural Networks [1]

Bayesian DNNs are based on marginalization rather than MAP optim.:

P(y |x) = Eω∼P(ω|D) [P(y |x ,ω)] (11)

P(y |x) =
∫

P(y |x ,ω)P(ω|D)dω (12)

In practice:

P(y |x) ≃ 1
Nmodel

∑
i

P(Y |X ,ωi ), with ωi ∼ P(ω|D) (13)

⇒ Different methods to estimate P(ω|D).
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Bayesian Neural Networks

Posterior “Landscape” and Ensembles

Figure: Top: P(ω|D), with representations from VI (orange), deep ensembles
(blue), multiBNN (red). Middle P(y |x ,ω) (from Wilson & Izmailov [15])
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Bayesian Neural Networks

How to estimate the Posterior of BNN?

Markov Chain Monte Carlo (MCMC)

MCMC methods sample from the posterior distribution by
constructing a Markov chain that converges to the desired
distribution.
Popular MCMC algorithms for Bayesian neural networks include
Metropolis-Hastings [16], Langevin Dynamics [15], and Hamiltonian
Monte Carlo [14].
While MCMC provides accurate posterior estimates, it can be
computationally expensive for large-scale networks.
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Bayesian Neural Networks

How to estimate the Posterior of BNN?

Dropout Variational Inference
Dropout is a regularization technique commonly used in neural networks.

Dropout Variational Inference (DVI) extends dropout to approximate
Bayesian inference.

It interprets dropout as sampling from a variational distribution over the
weights, enabling uncertainty estimation.

Variational Inference (VI)

VI [1] approximates the posterior distribution with a simpler distribution,
typically from a parametric family.

It formulates an optimization problem to minimize the divergence between
the true posterior and the approximating distribution.

While VI provides an interpretable way to estimate the posterior, it can be
computationally expensive, unstable, and collapse to a single DNN
without variance.
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BNN with VI

Variational inference

Variational inference approximates the posterior P(ω|Dl) with a family of
distributions qλ(ω/Dl). The variational parameter λ indexes the family
of distributions. For example, if q were Gaussian, it would be the mean
and variance of the latent variables for each datapoint λxi = (µxi , σ

2
xi )).

Question : How can we know how well our variational posterior
qλ(w/Dl) approximates the true posterior P(ω|Dl)?
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Variational inference

Question : How can we know how well our variational posterior
qλ(ω/Dl) approximates the true posterior P(ω|Dl)?
We can use the Kullback-Leibler divergence, which measures the
information lost when using q to approximate P :

KL(qλ(ω/Dl) || P(ω|Dl)) =

∫
ω

(
qλ(ω/Dl) log(

qλ(ω/Dl)

P(ω|Dl)
)

)
dω

=

∫
ω

(
qλ(ω/Dl) log(

qλ(ω/Dl)

P(Dl)P(Dl ,ω)
)

)
dω

= Eq[log qλ(ω/Dl)]− Eq[logP(ω,Dl)] + logP(Dl)

Our goal is to find the variational parameters λ that minimize this
divergence. The optimal approximate posterior is thus
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Variational inference

The optimal approximate posterior is thus

q∗λ(ω/Dl) = argminλKL(qλ(ω/Dl) || P(ω|Dl)).

This is impossible to compute directly due to P(Dl) that appears in the
divergence. So, we consider the following function:

ELBO(λ) = Eq[logP(ω,Dl)]− Eq[log qλ(ω/Dl)]

= −
∫
ω

(
qλ(ω/Dl) log(

qλ(ω/Dl)

P(ω)P(Dl |ω)
)

)
dω

= Eq[logP(Dl |ω)]−KL(qλ(ω/Dl) || P(ω))

Note that KL(qλ(ω/Dl) || P(ω|Dl)) = logP(Dl)− ELBO(λ).
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Variational inference: Reparametrization trick

theorem: Let ϵ be a random variable having a probability density given
by q(ϵ) and let ω = t(λ, ϵ). Suppose that qλ(ω/Dl), is such that
q(ϵ)dϵ = qλ(ω/Dl)dω. Then for a function f with derivatives in ω:

∂

∂λ
Eqλ(ω/Dl )f (ω, λ) = Eq(ϵ)

[
∂f (ω, λ)

∂ω

∂ω

∂λ
+

∂f (ω, λ)

∂λ

]
.
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Variational inference [1]
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Weight Uncertainty in Neural Networks [1]1

1Image credit: Eric Ma
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TRADI for a simpler BNN

TRADI [10]

ω(0) is the initial set of weights {ωk(0)}Kk=1 following N (0, σ2
k),

where σ2
k are fixed as in [2].

L(ω(t), yi ) is the loss function used to measure the dissimilarity
between the output gω(t)(xi ) of the DNN and the expected output
yi . One can use different loss functions.
Weights on different layers are assumed to be independent of one
another at all times.
Each weight ωk(t), k = 1, . . . ,K , follows a non-stationary Normal
distribution (e.g. Wk(t) ∼ N (µk(t), σ

2
k(t))) whose two parameters

are tracked.
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TRADI [10]

We had following state and measurement equations for the mean µk(t):{
µk(t) = µk(t − 1)− η∇Lωk (t) + εµ
ωk(t) = µk(t) + ε̃µ

(14)

with εµ being the state noise, and ε̃µ being the observation noise, as
realizations of N (0, σ2

µ) and N (0, σ̃2
µ) respectively.
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TRADI [10]

The state and measurement equations for the variance σk are given by:

 σ2
k(t) = σ2

k(t − 1) +
(
η∇Lωk (t)

)2 − η2µk(t)
2 + εσ

zk(t) = σ2
k(t)− µk(t)

2 + ε̃σ
with zk(t) = ωk(t)

2
(15)

with εσ being the state noise, and ε̃σ being the observation noise, as
realizations of N (0, σ2

σ) and N (0, σ̃2
σ), respectively.
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TRADI for a simpler BNN

TRADI [10]

(Normal DNN ) (Bayesian DNN)
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TRADI [10]

We sample new realizations of W (t∗) using the following formula:

ω̃(t∗) = µ(t∗) +Σ1/2(t∗)× m1 with Σ the covariance matrix. (16)

m1 is a realization of the multivariate Gaussian N (0K , IK ). Then we take
the expectation over this distribution :

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ω̃j(t∗), x∗) (17)

W(0) W(t) W(t*)

51 / 62



Uncertainty Quantification in Deep Learning
Make me a BNN with ABNN

How to estimate the Posterior of BNN?

Classical VI-BNN
Using the "reparametrization trick", a layer j of an MLP can be written:

uj = norm
([

W (j)
µ + ϵjW

(j)
σ

]
hj−1, βj , γj

)
, and

aj = a(uj),
(18)

where the matrices W
(j)
µ and W

(j)
σ denote the mean and standard

deviation of the posterior distribution of layer j , ϵj ∼ N (0,1) and the
operator norm(·, βj , γj), of trainable parameters βj and γj , can refer to
any batch, layer, or instance normalization.
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How to turn a DNN into a BNN?

ABNN [17]

Our objective differs from VI-BNN, which requires training the posterior
distribution parameters from scratch. Instead, our approach entails
leveraging and converting an existing DNN into a BNN.

1. Train a single model 3. Train ABNN2. Transform weights with ABNN

Figure: Illustration of the training process for the ABNN. The procedure
begins with training a single DNN ωMAP, followed by architectural adjustments
to transform it into an ABNN. The final step involves fine-tuning the ABNN
model.
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How to turn a DNN into a BNN?

ABNN [17]

Formally, our BNN relies on a new layer BNL(·):

uj = BNL
(
W (j)hj−1

)
, andaj = a(uj), with

BNL(hj) =
hj − µ̂j

σ̂j
× γj(1 + ϵj) + βj .

(19)

This can be seen as adding a Gaussian dropout on the normalization layer and
finetuning the DNN. We propose to train multiple of these ABNNs to have
multiple modes of the posterior.

ABNN during evaluation

During evalution, for each sample from ABNN ωm, we augment the number of
samples by independently sampling multiple ϵj ∼ N (0,1).

P(y | x ,D) ≈ 1
ML

L∑
l=1

M∑
m=1

P(y | x ,ωm, ϵl). (20)
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Classification Results

→ ABNN improves uncertainty quantification with small computational
overhead

→ Most of the gains are linked to improved epistemic uncertainty (as
measured by OOD detection)
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Semantic segmentation Results

→ ABNN also performs well
in the segmentation setting
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Conclusions

Exploring Further

Contribute to Torch Uncertainty: If you want to advance the
field, consider contributing to TorchUncertainty.

https://github.com/ENSTA-U2IS-AI/torch-uncertainty

Explore Our Resources: Check out our curated list of resources on
Uncertainty, available at our "awesome of uncertainty" repository.

https://github.com/ENSTA-U2IS-AI/
awesome-uncertainty-deeplearning
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Practical session

Link to the fourth practical session: https://drive.google.com/
file/d/1vUVsO5gDP6M7NnpfRr0LjxG7P2d-76A5

Short link: https://tinyurl.com/HelmHUQ2
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