

Why to study stars underground?

R. Depalo

Università degli Studi di Milano and INFN Milano

Nuclear reactions in Astrophysics

R. Depalo

$$\frac{\text{N° Reactions}}{\text{time } \cdot \text{ volume}} = n_a \cdot n_b \cdot v \cdot \sigma(v)$$

MAXWELL - BOLTZMANN DISTRIBUTION

$$P(v)dv = \left(\frac{m_{ab}}{2\pi kT}\right)^{3/2} e^{-m_{ab}v^2/(2kT)} 4\pi v^2 dv$$

R. Depalo

Nuclear reactions occur at energies far below the Coulomb barrier (quantum-mechanical tunnel)

The barrier penetration probability is steeply energy-dependent

$$\sigma(E) = \frac{1}{E} S(E) \exp\left(-cZ_0 Z_1 \sqrt{\frac{\mu}{E}}\right)$$

At Gamow peak energies $\sigma \sim fb - nb (1b = 10^{-24} cm^2)$

How to measure a nuclear cross section in the lab?

ACCELERATOR

- High intensity
- High stability
- Small energy spread

·····›

How to measure a nuclear cross section in the lab?

- High purity
- Stable against irradiation

How to measure a nuclear cross section in the lab?

• Best compromise between detection efficiency and energy resolution

Expected counting rate in the detector

Expected counting rate in the detector

R. Depalo

Expected counting rate in the detector

Why underground?

Main sources of environmental background in a gamma ray spectrum:

Naturally-occurring radionuclides:

 $^{235,\;238}\text{U},\,^{232}\text{Th}$ chains and ^{40}K

Cosmic rays:

mainly muons at sea level

Neutrons:

from fission of ^{238}U , (α ,n) reactions and muon-induced spallation

C. Broggini et al. Progress in Particle and Nuclear Physics 98 (2018) 55-84

Why underground?

+ More effective passive shielding

Underground nuclear astro labs worldwide

Underground nuclear astro labs worldwide

The Laboratory for Underground Nuclear Astrophysics

The Laboratory for Underground Nuclear Astrophysics

The Laboratory for Underground Nuclear Astrophysics

LUNA legacy: Reactions studied since 1991

LUNA legacy: Reactions studied since 1991

CNO CYCLE

NeNa and MgAI CYCLES

PRE-MAIN SEQUENCE: ${}^{6}Li(p, \gamma){}^{7}Be$ S-PROCESS NUCLEOSYNTHESIS: ${}^{13}C(\alpha, n){}^{16}O, {}^{22}Ne(\alpha, \gamma){}^{26}Mg$

Recent results by the LUNA Collaboration

Big Bang Nucleosynthesis

The first nucleosynthesis event dates back to ~ 3 min after the Big Bang

Big Bang Nucleosynthesis

The comparison of observed primordial elemental abundances with the abundances predicted by BBN (intersection of blue curves with vertical line)provides stringent constraints to cosmological parameters and the Big Bang model

The ${}^{2}H(p,\gamma){}^{3}He$ reaction

PRIMORDIAL ABUNDANCE OF ²H:

 <u>Direct measurements</u>: observation of absorption lines in DLA system

$$\left[\frac{D}{H}\right]_{OBS} = (2.527 \pm 0.030) \cdot 10^{-5}$$

 <u>BBN theory</u>: from the cosmological parameters and the cross sections of the processes involved in ²H creation and destruction

 $\left[\frac{D}{H}\right]_{BBN} = \frac{(2.587 \pm 0.055) \cdot 10^{-5}}{(2.439 \pm 0.052) \cdot 10^{-5}}$

The D/H predicted by BBN changes by 6% depending on the ${}^{2}H(p,\gamma){}^{3}He$ cross section adopted

R. Cooke at al., ApJ. 855, 102 (2018)

Plank 2018 results A&A 641, A6 (2020)

²H(p, γ)³He reaction: State of the art

The cross section of the 2 H(p, γ) 3 He reaction is the main source of uncertainty on the primordial 2 H abundance

- Measurement at solar energies performed at the LUNA – 50 kV accelerator
- → Only few data points available at BBN energies

²H(p, γ)³He reaction: setup at LUNA

V. Mossa et al. EPJ A 56,144 (2020)

²H(p, γ)³He reaction: Results

nature

Explore content Y About the journal Y Publish with us Y

nature > articles > article

Article Published: 11 November 2020

The baryon density of the Universe from an improved rate of deuterium burning

V. Mossa, K. Stöckel, [...]S. Zavatarelli 🖂

Nature 587, 210–213 (2020) | Cite this article 4402 Accesses | 13 Citations | 168 Altmetric | Metrics

Systematic uncertainty reduced to < 3%

²H(p, γ)³He reaction: Results

Using the baryon density provided by Planck, we derive

$$\left[\frac{D}{H}\right]_{BBN} = (2.52 \pm 0.07) \cdot 10^{-5}$$

In excellent agreement with astronomical observations $\left[\frac{D}{H}\right]_{OBS} = (2.527 \pm 0.030) \cdot 10^{-5}$

V. Mossa et al. Nature 587, 210-213 (2020)

The LUNA-MV project

The LUNA-MV project

- Inline Cockcroft Walton accelerator
- TERMINAL VOLTAGE: 0.2 3.5 MV
- **Beam energy reproducibility:** 0.01% TV or 50V
- Beam energy stability: 0.001% TV / h
- Beam current stability: < 5% / h

H⁺ beam: 500 - 1000 eµA He⁺ beam: 300 - 500 eµA C⁺ beam: 100 - 150 eµA C⁺⁺ beam: 60 - 100 eµA

80 cm-thick concrete shielding around accelerator room. This will reduce the neutron flux just outside the shielding to a value about one order of magnitude lower than the neutron flux at LNGS

LUNA-MV: 5yr scientific program

Scientific program for the first 5 years

¹⁴N(p,γ)¹⁵O: the bottleneck reaction of the CNO cycle in connection with the solar abundance problem. Also commissioning measurement for the LUNA MV facility

¹²C+¹²C: energy production and nucleosynthesis in Carbon burning. Global chemical evolution of the Universe

 $^{13}C(\alpha,n)^{16}O$ and $^{22}Ne(\alpha,n)^{25}Mg$: neutron sources for the s-process (nucleosynthesis beyond Fe)

The LUNA-MV project

Accelerator being installed right now!

THANK YOU!

The LUNA collaboration

- A. Compagnucci, M. Junker | INFN LNGS /*GSSI, Italy
- C. Broggini, A. Caciolli, P. Marigo, R. Menegazzo, D. Piatti, J. Skowronski | Università di Padova and INFN Padova , Italy
- A. Formicola, C. Gustavino | INFN Roma 1, Italy
- D. Bemmerer, A. Boeltzig | HZDR Dresden , Germany
- L. Csedreki, Z. Elekes, Zs. Fülöp, Gy. Gyürky, T. Szücs | MTA-ATOMKI Debrecen, Hungary
- M. Lugaro | Konkoly Observatory,n) and spallation Hungarian Academy of Sciences,n) and spallation Budapest, Hungary
- O. Straniero | INAF Osservatorio Astronomico di Collurania, Italy
- P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli | Università di Genova and INFN Genova, Italy
- R. Depalo, F. Ferraro, A. Guglielmetti, E. Masha | Università di Milano and INFN Milano, Italy
- C. Ananna, A. Best, A. Di Leva, G. Imbriani, D. Rapagnani | Università di Napoli and INFN Napoli, Italy
- F. Cavanna, G. Gervino, P. Colombetti | Università di Torino and INFN Torino, Italy
- M. Aliotta, C. Bruno, T. Davinson | University of Edinburgh, United Kingdom
- F. Barile, G.F. Ciani, V. Paticchio, L. Schiavulli | Università di Bari and INFN Bari, Italy
- R. Perrino | INFN Lecce, Italy
- M. Campostrini, V. Rigato | INFN LNL, Italy