

"Helping the students with less computing background succeed makes a much bigger difference for society long-term than does keeping entertained the most privileged students." (Mark Guzdial, 2020)

"Helping the students with less computing background succeed makes a much bigger difference for society long-term than does keeping entertained the most privileged students." (Mark Guzdial, 2020)

audience:

domain scientists

"Helping the students with less computing background succeed makes a much bigger difference for society long-term than does keeping entertained the most privileged students." (Mark Guzdial, 2020)

- audience: domain scientists
- goals:
 - 1. learn existing tools
 - 2. adopt to domain data

"Helping the students with less computing background succeed makes a much bigger difference for society long-term than does keeping entertained the most privileged students." (Mark Guzdial, 2020)

- audience: domain scientists
- goals:
 - 1. learn existing tools
 - 2. adopt to domain data

- content serving the majority of learners:
 - concepts
 - pipelines
 - metrics

No Free Lunch (David Wolpert, 1996)

"In a noise-free scenario where the loss function is the misclassification rate, if one is interested in off-training-set error, then there are no a priori distinctions between learning algorithms.

"In a noise-free scenario where the loss function is the misclassification rate, if one is interested in off-training-set error, then there are no a priori distinctions between learning algorithms.

How well you do is determined by how 'aligned' your learning algorithm $P(f_{pred}|data)$ is with the actual posterior, $P(f_{true}|data)$."

Modern (Teaching) Challenges

- content for 3 4 days (essential vs. important)
- * slidedecks won't cut it (learner speed)
- 😀 zoom fatigue

A status quo

instructor transports content

(one speed for all)

P status quo

- instructor transports content (one speed for all)
 - learner consumes exercises (reinforces alone)

P status quo

- instructor transports content (one speed for all)
 - learner consumes exercises (reinforces alone)

- instructor transports content (one speed for all)
 - learner consumes exercises (reinforces alone)

the flipped

i learner consumes content (alone at individual speed)

status quo

- instructor transports content (one speed for all)
 - learner consumes exercises (reinforces alone)

flipped

- i learner consumes content (alone at individual speed)
- learner performs exercises in group (reinforces with mentor)

Machine learning in Python with scikit-learn MOOC

 \equiv

Introduction

Course presentation

• Welcome!

The goal of this course is to teach machine learning with scikit-learn to beginners, even without a strong technical background.

Predictive modeling brings value to a vast variety of data, in business intelligence, health, industrial processes and scientific discoveries. It is a pillar of modern data science. In this field, scikit-learn is a central tool: it is easily accessible, yet powerful, and naturally dovetails in the wider ecosystem of datascience tools based on the Python programming language.

This course is an in-depth introduction to predictive modeling with scikit-learn. Step-by-step and didactic lessons introduce the fundamental methodological and software tools of machine learning, and is as such a stepping stone to more advanced challenges in artificial intelligence, text mining, or data science.

The course is more than a cookbook: it will teach you to be critical about each step of the design of a predictive modeling pipeline: from choices in data preprocessing, to choosing models, gaining insights on their failure modes and interpreting their predictions.

:: O ₹

Course Setup and Timetable

- Split audience into teams of up to approx 10 learners (2 mentor(s) per team)
- teams walk through modules of learning material independently
- learning modules: jupyter notebooks and prerecorded videos (on-premise jupyter service, mybinder, google colab)

Course Setup and Timetable

- Split audience into teams of up to approx 10 learners (2 mentor(s) per team)
- teams walk through modules of learning material independently
- learning modules: jupyter notebooks and prerecorded videos (on-premise jupyter service, mybinder, google colab)

- 09:00 all-hands good morning (feedback from last day)
- 09:15 split into teams (rinse and repeat)
 - learners study notebooks autonomously
 - mentor polls team to rejoin (or for more time)
 - general discussion on the video
 - learners conduct exercises
- 16:15 general questions and feedback
- 16:30 good bye

Evidences for different learning speeds



Figure: Use of videos of five teams across the course duration (hours into course). Teams expose different learning speeds.

Learner Assessment

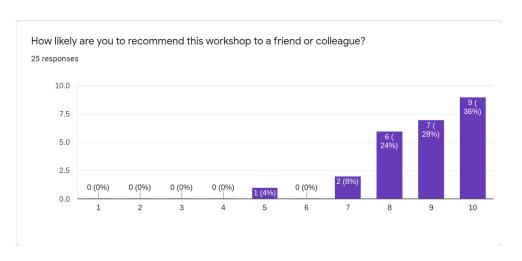


Figure: Net Promoter Score: results from Oct 2021 GSI workshop survey, 25/36 learners replied

Code of Conduct

Please use positive language and be supportive to your peers. In case of issues, contact the facilitators.

Code of Conduct

Please use positive language and be supportive to your peers. In case of issues, contact the facilitators.

Central (learner) Pad

Use the central pad to get orientation. Add anything that may be of general interest.

Code of Conduct

Please use positive language and be supportive to your peers. In case of issues, contact the facilitators.

Zoom

Use our 700m room for communication.

Central (learner) Pad

Use the central pad to get orientation. Add anything that may be of general interest.

Code of Conduct

Please use positive language and be supportive to your peers. In case of issues, contact the facilitators.

700m

Use our 700m room for communication.

Central (learner) Pad

Use the central pad to get orientation. Add anything that may be of general interest.

Notehooks

If you can, work through the notebooks on your local laptop. A backup solution is described on the central learner pad.

To all mentors ...

Thank you!

(especially given the chaotic preparation)

virtual "flipped" classroom approach

- virtual "flipped" classroom approach
- small learner groups (in-class notebook-discuss-exercise cycles)

- virtual "flipped" classroom approach
- small learner groups (in-class notebook-discuss-exercise cycles)
- scalable compact courses (open educational resources, reusable video+notebooks)

- virtual "flipped" classroom approach
- small learner groups (in-class notebook-discuss-exercise cycles)
- scalable compact courses (open educational resources, reusable video+notebooks)
- convergence of MOOC and classroom

- virtual "flipped" classroom approach
- small learner groups (in-class notebook-discuss-exercise cycles)
- scalable compact courses (open educational resources, reusable video+notebooks)
- convergence of MOOC and classroom

- virtual "flipped" classroom approach
- small learner groups (in-class notebook-discuss-exercise cycles)
- scalable compact courses (open educational resources, reusable video+notebooks)
- convergence of MOOC and classroom

Questions, Comments, Feedback or Concerns are highly welcome!

- virtual "flipped" classroom approach
- small learner groups (in-class notebook-discuss-exercise cycles)
- scalable compact courses (open educational resources, reusable video+notebooks)
- convergence of MOOC and classroom

Questions, Comments, Feedback or Concerns are highly welcome!

Have fun learning together!