
Experiments Orchestration with
Bluesky

Luca Porzio - Marcel Bajdel

EPICS Collaboration Meeting – Spring 2024
Pohang (South Korea)

2

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

3

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

4

ABSTRACTION LAYER WITH OPHYD

• Ophyd puts the control layer (e.g. EPICS, TANGO, serial

protocols, HTTP, …) behind a high-level interface. It keeps

device-specific details contained.

• Group individual signals into logical "Devices" to be

configured and used as one unit.

• Assign signals and devices human-friendly names that

propagate into metadata.

• Categorize signals by "kind" (primary reading, configuration,

engineering/debugging).

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

from ophyd import Device, Component, EpicsSignal

Here we group signals into a Device
class XYStage(Device):
 x = Component(EpicsSignal, 'Mtr-X')
 y = Component(EpicsSignal, 'Mtr-Y')

and connect to multiple instances
of that device.
left_stage = XYStage('TEST:Left-', name='left_stage')
right_stage = XYStage('TEST:Right-', name='right_stage')

epics> dbl

TEST:Left-Mtr-X
TEST:Left-Mtr-Y
TEST:Right-Mtr-X
TEST:Right-Mtr-Y

5

INTERACT WITH DEVICES

• Read, Describe, Set or Subscribe to single signals

or Devices.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

from ophyd import Device, Component, EpicsSignal,
EpicsSignalRO

class RandomWalk(Device):
 x = Component(EpicsSignalRO, 'x')
 dt = Component(EpicsSignal, 'dt')

random_walk = RandomWalk('random_walk:', name='random_walk')
random_walk.wait_for_connection()

random_walk.x.read()

random_walk.describe()

status = random_walk.dt.set(2)

6

DEVICE STATUS OBJECT

• Ophyd Status objects signal when some potentially-lengthy action is

complete.

• A Status object is created with an associated timeout.

• The recipient of the Status object may add callbacks that will be

notified when the Status object completes.

• The Status object is marked as completed successfully, or marked as

completed with an error, or the timeout is reached, whichever happens

first.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

7

ADD COMPLEX BEHAVIORS

• Implement coordination across multiple

PVs, such as a setpoint PV and a

readback PV, in order to know when a

process is done.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

class Decay(Device):
 """

A device with a setpoint and readback that decays exponentially toward the
setpoint.
 """
 readback = Component(EpicsSignalRO, ':I')
 setpoint = Component(EpicsSignal, ':SP')
 done = Component(EpicsSignalRO, ':done')

 def set(self, setpoint):
 """

Set the setpoint and return a Status object that monitors the 'done' PV.
 """
 status = DeviceStatus(self.done)

Wire up a callback that will mark the status object as finished
when the done signal goes from low to high---that is, a positive edge.
def callback(old_value, value, **kwargs):

if old_value == 0 and value == 1:
 status.set_finished()

self.done.clear_sub(callback)

 self.done.subscribe(callback)

 # Now 'put' the value.
 self.setpoint.put(setpoint)

And return the Status object, which the caller can use to
tell when the action is complete.

 return status

decay = Decay('decay', name='decay')
status = decay.set(135)

8

USE STANDARD CLASSES

• The pattern of readback, setpoint and done is

pretty common, so ophyd has a special Device

subclass (PVPositioner) that writes the set()

method for you if you provide components with

these particular names.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

from ophyd import PVPositioner

class Decay(PVPositioner):
 """

A device with a setpoint and readback that decays
exponentially toward the setpoint.
 """
 readback = Component(EpicsSignalRO, ':I')
 setpoint = Component(EpicsSignal, ':SP')
 done = Component(EpicsSignalRO, ':done')

actuate = Component(EpicsSignal, ...) # the "Go" button

def callback(status):
 print("DONE:", status)

decay = Decay('decay', name='decay')
status = decay.set(140)
status.add_callback(callback)

9Luca Porzio – luca.porzio@helmholtz-berlin.de

10

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

11

BLUESKY RUN ENGINE

• Bluesky encodes an experimental procedure as a plan, a

sequence of atomic instructions. The RunEngine (RE) is

an interpreter for plans.

• The RE lets us focus on the logic of our experimental

procedure while it handles important technical details

consistently:

o it communicates with hardware

o monitors for interruptions

o organizes metadata and data

o coordinates I/O

o ensures that the hardware is left in a safe state at
exit time.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

RunEngine

PlanDevice

Device

Device

r/w

12

PLANS

• They represent experimental procedures.

• A plan tells the RunEngine how to interact

with Devices.

• A variety of pre-assembled plans are

provided (e.g. scan, count).

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

from ophyd.sim import det, motor
from bluesky.plans import count, scan

a single reading of the detector 'det'
RE(count([det]))

five consecutive readings
RE(count([det], num=5))

five sequential readings separated by a 1-second delay
RE(count([det], num=5, delay=1))

a variable delay
RE(count([det], num=5, delay=[1, 2, 3, 4]))

Take readings forever, until interrupted (e.g., with Ctrl+C)
RE(count([det], num=None))

Scan motor from -10 to 10, stopping at 15 equally-spaced points
along the way and reading det.
RE(scan([det], motor, -10, 10, 15))

13

PLANS

• Pre-assembled plans are built from smaller “plan stubs”.

• We can mix and match the “stubs” and the “pre-

assembled” plans to create custom procedures.

• Bluesky is not tied to ophyd or EPICS specifically: any

Python object may be used, so long as it provides the

specified methods and attributes that Bluesky expects.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

from ophyd.sim import det, motor
from bluesky.plans import scan
from bluesky.plan_stubs import mv

def sweep_exposure_time(times):
"Multiple scans: one per exposure time setting."

 for t in times:
yield from mv(det.exp, t)

 yield from scan([det], motor, -10, 10, 5)

motor.delay = 0
RE(sweep_exposure_time([0.01, 0.1, 1]))

14

PLANS

• Pre-assembled plans are built from smaller “plan stubs”.

• We can mix and match the “stubs” and the “pre-

assembled” plans to create custom procedures.

• Bluesky is not tied to ophyd or EPICS specifically: any

Python object may be used, so long as it provides the

specified methods and attributes that Bluesky expects.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

from ophyd.sim import det, motor
from bluesky.plans import scan
from bluesky.plan_stubs import mv

def sweep_exposure_time(times):
"Multiple scans: one per exposure time setting."

 for t in times:
yield from mv(det.exp, t)

 yield from scan([det], motor, -10, 10, 5)

motor.delay = 0
RE(sweep_exposure_time([0.01, 0.1, 1]))

Plans are implemented as generators.
Read more here:
https://blueskyproject.io/bluesky/appendix.html

15Luca Porzio – luca.porzio@helmholtz-berlin.de

16

INTERRUPTIONS

• The RunEngine capture the SIGINT (Ctrl+C) signal and it

can be safely interrupted and resumed.

• Plans can provide checkpoints, indicating a place where

it is safe to resume after an interruption.

• Suspension can be interactive (using SIGINT), planned

(incorporated into a plan) or automated (using an agent

in background).

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

Command Outcome

Ctrl+C Pause soon.

Ctrl+C twice Pause now.

Command Outcome

RE.resume() Safely resume plan.

RE.abort()
Perform cleanup. Mark as
aborted.

RE.stop()
Perform cleanup. Mark as
success.

RE.halt()
Do not perform cleanup —
just stop.

RE.state Check if ‘paused’ or ‘idle’.

Interactive Suspension/Resume

17

INTERRUPTIONS

• The RunEngine capture the SIGINT (Ctrl+C) signal and it

can be safely interrupted and resumed.

• Plans can provide checkpoints, indicating a place where

it is safe to resume after an interruption.

• Suspension can be interactive (using SIGINT), planned

(incorporated into a plan) or automated (using an agent

in background).

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

import bluesky.plan_stubs as bps

def pausing_plan():
 while True:
 yield from some_plan(...)

print("Type RE.resume() to go again or RE.stop() to stop.")
marking where to resume from
yield from bps.checkpoint()

 yield from bps.pause()

Planned suspension

18

INTERRUPTIONS

• Automated pausing can be achieved by making use of

suspender agents.

• The agent monitors some condition and, if it detects a

problem, it suspends execution. When it detects that

conditions have returned to normal, it gives the

RunEngine permission to resume.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

Automated suspend/resume

from ophyd import EpicsSignal
from bluesky.suspenders import SuspendFloor

beam_current = EpicsSignal('...PV string...')

pause when beam_current <= 2
resume when beam_current >= 3
sus = SuspendFloor(beam_current, 2, resume_thresh=3)
RE.install_suspender(sus)

19Luca Porzio – luca.porzio@helmholtz-berlin.de

20

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

21

DOCUMENTS & METADATA

• Enable better research by recording rich metadata

alongside measured data for use in later analysis.

• All of the metadata and data generated by executing the

plan is organized into Documents, which are created by

the RunEngine.

• Documents in each run are:

o Run Start: metadata known at the start of the run.

o Event Descriptor: schema for the data in the
Event + hardware configuration

o Event: actual measurements.

o Run Stop: metadata known only at the end of the
run.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

…

Run
Start

Event
Descriptor

Events Run
Stop

RunEngine

PlanDevice

Device

Device

r/w

22

DOCUMENTS & METADATA

• There are some things that we know a priori before

doing an experiment. They are good candidates for

inclusion in the Start Document.

• Some information are experiment specific and should

be included in a single run.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

…

Run
Start

Event
Descriptor

Events Run
Stop

Experiment
Specific MD

RunEngine

PlanDevice

Device

Device

r/w

23

ADDING METADATA

• For each run, the RunEngine automatically

records: time, ID, plan name and plan type.

• Additional metadata can be added

interactively (for one plan run),

persistently (for repeated use and/or

between sessions).

• Allowed data types are: strings, numbers,

tuples, and (nested) dictionaries.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

only valid to this run
RE(plan(), sample_id='A', purpose='calibration', operator='Luca')

through a plan with the "md" parameter
def my_plan():

yield from count([det], md={'purpose': 'calibration'}) # one
yield from scan([det], motor, 1, 5, 5, md={'purpose': 'good data'}) # two
yield from count([det], md={'purpose': 'sanity check'}) # three

reuse metadata on all plans by adding to RE.md
RE.md['proposal_id'] = 123456
RE.md['project'] = 'fusion reactor'
RE.md['dimensions'] = (5, 3, 10)

link metadata to a directory of files for use between sessions
from bluesky.utils import PersistentDict
RE.md = PersistentDict('some/path/here')

24Luca Porzio – luca.porzio@helmholtz-berlin.de

25

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

26

DATA PROCESSING USING CALLBACKS

• Each time a new Document is created, the RunEngine

passes it to a list of functions. These functions

(“callbacks”) can be used to store the data to disk, print

a line of text to the screen, add a point to a plot, or even

transfer the data to a cluster for immediate processing.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

Document

Callback

Plot

Callback Callback

Event
Streaming

Export to File
System

RunEngine

27

DATA PROCESSING USING CALLBACKS

• A callback is like a self-addressed stamped envelope: it

tells the RunEngine, “When you create a Document, send

it to this function for processing.”

• Callbacks can be invoked interactively (specific to a run)

or persistently (applied to every plan run).

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

from bluesky.plans import count
from ophyd.sim import det

RE(count([det]), print)

subscribe the RE to the callback "cb"
to run it persistenlty
RE.subscribe(cb)

28

VISUALIZATION AND EXPORT

• Pre-assebled callbacks are available in Bluesky for

plotting, fitting and exporting.

• Examples are:

o LivePlot (plot scalars)

o LiveFit (perform non-linear least squared best
fit)

o FileWriter (export to FileSystem)

o Elog

o Telegram …

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

LivePlot LiveGrid

from ophyd.sim import det, motor
from bluesky.plans import scan
from bluesky.callbacks import LiveTable

dets = [det]
RE(scan(dets, motor, 1, 5, 5), LiveTable(dets))

+-----------+------------+------------+----------------+------------+
| seq_num | time | motor | motor_setpoint | det |
+-----------+------------+------------+----------------+------------+
1	19:29:51.1	1.000	1.000	0.607
2	19:29:51.2	2.000	2.000	0.135
3	19:29:51.3	3.000	3.000	0.011
4	19:29:51.4	4.000	4.000	0.000
5	19:29:51.5	5.000	5.000	0.000
+-----------+------------+------------+----------------+------------+
generator scan ['81631d0a'] (scan num: 1)

29Luca Porzio – luca.porzio@helmholtz-berlin.de

30

BONUS: IPYTHON MAGICS

• IPython is an interactive python interpreter. It has a very

useful feature called “magics”.

• Magic commands act as convenient functions where

Python syntax is not the most natural one.

• They help scientists to write instructions in a more

clean way and less prone to syntax errors.

• Bluesky comes with a set of useful magics.

• It is possible to create custom magics and load them

into the environment.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

from bluesky.magics import BlueskyMagics
get_ipython().register_magics(BlueskyMagics)

from ophyd.sim import motor1

%mov motor1 42

from ophyd.sim import motor1
from bluesky.plan_stubs import mv

RE(mv(motor1, 42))

is equivalent to

• If IPython’s ‘automagic’ feature is enabled, IPython will even
let you drop the % as long as the meaning is unambiguous:

%mov motor1 42 mov motor1 42

31

SUMMARY: BLUESKY IN A NUTSHELL

•Live, Streaming Data: Available for inline visualization and processing.

•Rich Metadata: Captured and organized to facilitate reproducibility and searchability.

•Experiment Generality: Seamlessly reuse a procedure on completely different hardware.

•Interruption Recovery: Experiments are “rewindable,” recovering cleanly from interruptions.

•Automated Suspend/Resume: Experiments can be run unattended, automatically suspending

and resuming if needed.

•Pluggable I/O: Export data (live) into any desired format or database.

•Customizability: Integrate custom experimental procedures and commands, and get the I/O

and interruption features for free.

•Integration with Scientific Python: Interface naturally with numpy and Python scientific

stack.

BLUESKY TRAINING
EPICS COLLABORATION MEETING – SPRING 2024

Luca Porzio – luca.porzio@helmholtz-berlin.de

32Luca Porzio – luca.porzio@helmholtz-berlin.de

	Slide 1: Experiments Orchestration with Bluesky
	Slide 2: Architecture Overview
	Slide 3: Architecture Overview
	Slide 4: Abstraction Layer with ophyd
	Slide 5: INTERACT WITH devices
	Slide 6: device status object
	Slide 7: Add complex behaviors
	Slide 8: use standard classes
	Slide 9: Examples
	Slide 10: Architecture Overview
	Slide 11: Bluesky run engine
	Slide 12: plans
	Slide 13: plans
	Slide 14: plans
	Slide 15: Examples
	Slide 16: interruptions
	Slide 17: interruptions
	Slide 18: interruptions
	Slide 19: Examples
	Slide 20: Architecture Overview
	Slide 21: Documents & metadata
	Slide 22: Documents & metadata
	Slide 23: Adding metadata
	Slide 24: Examples
	Slide 25: Architecture Overview
	Slide 26: Data processing using callbacks
	Slide 27: Data processing using callbacks
	Slide 28: Visualization and export
	Slide 29: Examples
	Slide 30: Bonus: Ipython magics
	Slide 31: Summary: bluesky in a nutshell
	Slide 32: Questions?

