Experiments Orchestration with
Bluesky

Luca Porzio - Marcel Bajdel

EPICS Collaboration Meeting - Spring 2024
Pohang (South Korea)

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

Experimental procedure <«

Prompt feedback

Run Engine (bluesky) = “Documents” Streaming visualizat!on

Python abstractions
of hardware (ophyd)

Set value

\/

A

Read value

Control layer (e.g. EPICS)

v

A

Hardware -
(e.g. motors, detectors)

Luca Porzio - luca.porzio@helmholtz-berlin.de

7

7
Yo .
» write directly to storage

>

& processing/reduction
\ / Documents

Serialization Access saved data
(suitcase) (databroker/intake)
SciPy/PyData
structures
Persistent storage
(Ordinary files on disk, \ 4
a Database, and/or the Clou:)\ Interactive
> data analysis
Large detectors

2 HZB ?srgqligwltéer{in

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

Prompt feedback

Experimental procedure <«

l

Streaming visualization

Run Engine (bluesky) = “Documents”

Serialization

Python abstractions

of hardware (ophyd) (suitcase)
Set value Read value
4 Persistent storage
Control layer (e.g. EPICS) (Ordinary files on disk,
A a Database, and/or the Clo
4
Y4
Y4
7 Large detectors
\/ » Wwrite directly to storage
Hardware -

(e.g. motors, detectors)

Luca Porzio - luca.porzio@helmholtz-berlin.de

& processing/reduction
A

Documents

Access saved data

(databroker/intake)
SciPy/PyData
structures
\ V
ud) Interactive

data analysis

L

Jupyter ﬁé‘%
-
cam
bl

Helmholtz
Zentrum Berlin

HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

ABSTRACTION LAYERWITH OPHYD

* Ophyd puts the control layer (e.g. EPICS, TANGO, serial
protocols, HTTP, ...) behind a high-level interface. It keeps
device-specific details contained.

* Group individual signals into logical "Devices" to be
configured and used as one unit.

* Assign signals and devices human-friendly names that
propagate into metadata.

* Categorize signals by "kind" (primary reading, configuration,
engineering/debugging).

Luca Porzio - luca.porzio@helmholtz-berlin.de 4

epics> dbl

TEST:Left-Mtr-X
TEST:Left-Mtr-Y
TEST:Right-Mtr-X
TEST:Right-Mtr-Y

from ophyd import Device, Component, EpicsSignal
Here we group signals into a Device
class XYStage(Device

X = Component(EpicsSignal

y = Component(EpicsSignal

'"Mtr-X'
'Mtr-Y'

and connect to multiple instances
of that device.

left stage = XYStage
right_stage = XYStage

TEST:Left-"
TEST:Right-'

name="left_stage’
name='right_stage’

HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

from ophyd import Device, Component, EpicsSignal,
INTERACT WITH DEVICES EoiCsetanalRO
* Read, Describe, Set or Subscribe to single signals class RandomWalk(Device):

x = Component(EpicsSignalRO, 'x')

or Devices. dt = Component(EpicsSignal, 'dt")

random_walk = RandomWalk('random walk:', name='random walk")
random_walk.wait for connection()

random_walk.x.read()
random_walk.describe()

status = random walk.dt.set(2)

Luca Porzio - luca.porzio@helmholtz-berlin.de 5 HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

DEVICE STATUS OBJECT

* Ophyd Status objects signal when some potentially-lengthy action is
complete.

» A Status objectis created with an associated timeout.

* Therecipient of the Status object may add callbacks that will be
notified when the Status object completes.

* The Status object is marked as completed successfully, or marked as
completed with an error, or the timeout is reached, whichever happens
first.

Luca Porzio - luca.porzio@helmholtz-berlin.de 6 HZB

EIF_’ILéIESS(}%I-_rI_F%lBI’(\%II;\IAGI'ION MEETING - SPRING 2024
) class Decay(Device):

ADD COMPLEX BEHAVIORS

readback = Component(EpicsSignalRO, ":1")

))) setpoint = Component(EpicsSignal, ':SP")

* Implement coordination across multiple done = Component(EpicsSignalRO, ':done')
PVs, such as a setpoint PV and a def set(self, setpoint):

readback PV, in order to know when a

processis done. status = DeviceStatus(self.done)

Wire up a callback that will mark the status object as finished
when the done signal goes from low to high---that is, a positive edge.
def callback(old_value, value, **kwargs):
if old value == 0 and value ==
status.set_finished()
self.done.clear_sub(callback)

self.done.subscribe(callback)

Now 'put' the value.
self.setpoint.put(setpoint)

And return the Status object, which the caller can use to
tell when the action is complete.
return status

decay = Decay('decay', name='decay')
status = decay.set(135)

Luca Porzio - luca.porzio@helmholtz-berlin.de 7 HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

USE STANDARD CLASSES from ophyd import PVPositioner

class Decay(PVPositioner):
* The pattern of readback, setpoint and done is y¢)

pretty common, so ophyd has a special Device
subclass (PVPositioner) that writes the set()

method for you if you provide components with readback = Component(EpicsSignalRO, ":I')

setpoint = Component(EpicsSignal, ':SP'")

done = Component(EpicsSignalRO, ':done')

actuate = Component(EpicsSignal, ...) # the "Go" button

these particular names.

def callback(status):
print("DONE:", status)

decay = Decay('decay', name='decay')

status = decay.set(140)
status.add callback(callback)

Luca Porzio - luca.porzio@helmholtz-berlin.de 8 HZB

Luca Porzio - luca.porzio@helmholtz-berlin.de 9 HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

Experimental procedure

l

Run Engine (bluesky)

Python abstractions

Prompt feedback

Streaming visualization
& processing/reduction
A

“Documents”

Documents

Serialization Access saved data

of hardware (ophyd) (suitcase) (databroker/intake)
A
Set value Read value SciPy/PyData
structures
4 Persistent storage
Control layer (e.g. EPICS) (Ordinary files on disk, \
A a Database, and/or the Clou:)\ Interactive
> data analysis
Y4 o ° a
ET_ /
7 Large detectors Jupyter a
A » Wwrite directly to storage ﬁ@’
Hardware -~ ® ’ —
e.g. motors, detectors cam
(e.g ;) hed

Luca Porzio - luca.porzio@helmholtz-berlin.de

10 HZB ?:rl]rprﬁ(r;ltéemn

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

BLUESKY RUN ENGINE

* Bluesky encodes an experimental procedure as a plan, a Device
sequence of atomic instructions. The RunEngine (RE) is

aninterpreter for plans.

 TheRE lets us focus on the logic of our experimental

procedure while it handles important technical details
consistently:

it communicates with hardware
monitors for interruptions
organizes metadata and data
coordinates I/O RunEngine

ensures that the hardware is left in a safe state at
exit time.

O O O

Luca Porzio - luca.porzio@helmholtz-berlin.de 11 HZB .o

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

PLANS

* They represent experimental procedures.

* Aplantells the RunEngine how to interact
with Devices.

* Avariety of pre-assembled plans are
provided (e.g. scan, count).

Luca Porzio - luca.porzio@helmholtz-berlin.de

from ophyd.sim import det, motor
from bluesky.plans import count, scan

a single reading of the detector 'det'
RE(count([det]))

five consecutive readings
RE(count([det], num=5))

five sequential readings separated by a 1l-second delay
RE(count([det], num=5, delay=1))

a variable delay
RE(count([det], num=5, delay=[1, 2, 3, 4]))

Take readings forever, until interrupted (e.g., with Ctrl+C)
RE(count([det], num=None))

Scan motor from -10 to 10, stopping at 15 equally-spaced points
along the way and reading det.
RE(scan([det], motor, -10, 10, 15))

12 HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

PLANS

from ophyd.sim import det, motor
from bluesky.plans import scan
from bluesky.plan_stubs import mv

* Pre-assembled plans are built from smaller “plan stubs”.

* We can mix and match the “stubs” and the “pre-

assembled” plans to create custom procedures. def sweep_exposure_time(times):
"Multiple scans: one per exposure time setting."
for t in times:
yield from mv(det.exp, t)
o yield from scan([det], motor, -10, 10, 5)

« Bluesky is not tied to ophyd or EPICS specifically: any motor.delay = 6
RE(sweep_exposure_time([0.01, 0.1, 1]))

Python object may be used, so long as it provides the
specified methods and attributes that Bluesky expects.

Luca Porzio - luca.porzio@helmholtz-berlin.de 13 HZB /<ot

Zentrum Berlin

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

PLANS

from ophyd.sim import det, motor
from bluesky.plans import scan
from bluesky.plan_stubs import mv

* Pre-assembled plans are built from smaller “plan stubs”.

* We can mix and match the “stubs” and the “pre-

assembled” plans to create custom procedures. def sweep_exposure_time(times):
"Multiple scans: one per exposure time setting."
fo i i

yield from mv(det.exp, t)
o yield from scan([det], motor, -10, 10, 5)

« Bluesky is not tied to ophyd or EPICS specifically: any motor.delay = 6
RE(sweep_exposure_time([0.01, 0.1, 1]))

Python object may be used, so long as it provides the
specified methods and attributes that Bluesky expects.

Plans are implemented as generators.

Read more here:
https://blueskyproject.io/bluesky/appendix.html

Luca Porzio - luca.porzio@helmholtz-berlin.de 14 HZB ;:oe

Zentrum Berlin

Luca Porzio - luca.porzio@helmholtz-berlin.de 15 HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

INTERRUPTIONS

* The RunEngine capture the SIGINT (Ctrl+C) signal and it
can be safely interrupted and resumed.

* Plans can provide checkpoints, indicating a place where
it is safe to resume after an interruption.

« Suspension can be interactive (using SIGINT), planned
(incorporated into a plan) or automated (using an agent
in background).

Luca Porzio - luca.porzio@helmholtz-berlin.de 16

Command
Ctrl+C

Ctrl+C twice

Command

RE.resume()

RE.abort()

RE.stop()

RE.halt()

RE.state

Interactive Suspension/Resume

Outcome
Pause soon.

Pause now.

Outcome
Safely resume plan.

Perform cleanup. Mark as
aborted.

Perform cleanup. Mark as
success.

Do not perform cleanup —
just stop.

Check if ‘paused’ or ‘idle.

HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

» The RunEngine capture the SIGINT (Ctrl+C) signal and it ~ import bluesky.plan_stubs as bps
can be safely interrupted and resumed. def pausing plan():
while True:
« Plans can provide checkpoints, indicating a place where VEELE Hren e LAt o) ,)
print("Type RE.resume() to go again or RE.stop() to stop.")
it is safe to resume after an interruption. # marking where to resume from

yield from bps.checkpoint()

« Suspension can be interactive (using SIGINT), planned yield from bps.pause()

(incorporated into a plan) or automated (using an agent Planned suspension
in background).

Luca Porzio - luca.porzio@helmholtz-berlin.de 17 HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

INTERRUPTIONS

« Automated pausing can be achieved by makinguse of =~ from ophyd import EpicsSignal
from bluesky.suspenders import SuspendFloor
suspender agents.

. . L. beam current = EpicsSignal('...PV string...’
« The agent monitors some condition and, if it detects a g gnal(°)

problem, it suspends execution. When it detects that # pause when beam_current <= 2
resume when beam _current >= 3

sus = SuspendFloor(beam current, 2, resume_thresh=3)
RunEngine permission to resume. RE.install_suspender(sus)

conditions have returned to normal, it gives the

Automated suspend/resume

Luca Porzio - luca.porzio@helmholtz-berlin.de 18 HZB

Luca Porzio - luca.porzio@helmholtz-berlin.de 19 HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

] Prompt feedback
Experimental procedure € — — — — — — — = — — = = = = = = — -
|
1
Run Engine (blueSky) “Documents” Streaming-Visualization
& processing/reduction
A
Documents
Python abstractions Serialization Access saved data
of hardware (ophyd) (suitcase) (databroker/intake)
A
Set value Read value SciPy/PyData
structures
4 Per5|stent storage
Control layer (e.g. EPICS) (Ordinary files on disk, A\
A a Database, and/or the Cloud) Interactive
> data analysis
Ve -
Y » Large detectors
» write directly to storage

Hardware -
(e.g. motors, detectors)

Luca Porzio - luca.porzio@helmholtz-berlin.de 20 HZB .o

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

DOCUMENTS & METADATA

* Enable better research by recording rich metadata
alongside measured data for use in later analysis.

« All of the metadata and data generated by executing the
plan is organized into Documents, which are created by
the RunEngine.

* Documentsineachrun are:

o Run Start: metadata known at the start of the run.

o Event Descriptor: schema for the datain the
Event + hardware configuration

Event: actual measurements.

Run Stop: metadata known only at the end of the
run.

Luca Porzio - luca.porzio@helmholtz-berlin.de

Device

Device

Device

RunEngine

Run Event Events Run
Start Descriptor Stop
21 HZB ?:rl]rprﬁgﬂltéemn

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

DOCUMENTS & METADATA

* There are some things that we know a priori before
doing an experiment. They are good candidates for
inclusion in the Start Document.

* Some information are experiment specific and should
be included in a single run.

Luca Porzio - luca.porzio@helmholtz-berlin.de

Device

Device

Device

Experiment
Specific MD

RunEngine

Run Event Events Run
Start Descriptor Stop

22 HZB ?g*rtnrz?ritéerlin

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

ADDING METADATA

* For eachrun,the RunEngine automatically = # only valid to this run
) RE(plan(), sample_id='A', purpose='calibration’, operator='lLuca")
records: time, ID, plan name and plan type.
through a plan with the "md" parameter

e Additional m n def my_plan():
dditional metadata can be added yield from count([det], md={'purpose': 'calibration'}) # one
interactively (for one plan run), yield from scan([det], motor, 1, 5, 5, md={'purpose': 'good data'}) # two

. yield from count([det], md={'purpose': 'sanity check'}) # three
persistently (for repeated use and/or
reuse metadata on all plans by adding to RE.md

between sessions). RE.md['proposal_id'] = 123456

RE.md['project'] = 'fusion reactor’
* Allowed data types are: strings, numbers, RE.md['dimensions'] = (5, 3, 10)
tuples, and (nested) dictionaries. # link metadata to a directory of files for use between sessions

from bluesky.utils import PersistentDict
RE.md = PersistentDict('some/path/here’)

Luca Porzio - luca.porzio@helmholtz-berlin.de 23 HZB

Luca Porzio - luca.porzio@helmholtz-berlin.de 24 HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

. Prompt feedback
Experimental procedure € — — — — — — — — — = — - — — — — — -

|

Run Engine (bluesky) = “Documents”

Python abstractions

>

Serialization

of hardware (ophyd) (suitcase)
A
Set value Read value
4 Persistent storage
Control layer (e.g. EPICS) (Ordinary files on disk,
A a Database, and/or the Clo
4
Y4
Large detectors
\/ » Wwrite directly to storage

Hardware -
(e.g. motors, detectors)

Luca Porzio - luca.porzio@helmholtz-berlin.de

25

Streaming visualization
& processing/reduction

Access saved data
(databroker/intake)

u:)\ Interactive

data analysis

= @
T
Jupyter
&

SciPy/PyData
structures

HZB ;‘S:S'E?T:téerlin

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

DATA PROCESSING USING CALLBACKS

RunEngine

« Eachtime anew Document is created, the RunEngine

passes it to a list of functions. These functions

(“callbacks”) can be used to store the data to disk, print

a line of text to the screen, add a point to a plot, or even Document

transfer the data to a cluster for immediate processing.

..:‘: §g kafka

Plot Event Export to File
Streaming System

Luca Porzio - luca.porzio@helmholtz-berlin.de 26 HZB /<ot

Zentrum Berlin

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

DATA PROCESSING USING CALLBACKS

« Acallbackis like a self-addressed stamped envelope: it from bluesky.plans import count

. from ophyd.sim import det
tells the RunEngine, “When you create a Document, send A >

it to this function for processing.” RE(count([det]), print)
« Callbacks can be invoked interactively (specifictoarun) # subscribe the RE to the callback "cb”

to run it persistenlty

or persistently (applied to every plan run). RE. subscribe(cb)

Luca Porzio - luca.porzio@helmholtz-berlin.de 27 HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

VISUALIZATION AND EXPORT

» Pre-assebled callbacks are available in Bluesky for
plotting, fitting and exporting.

* Examples are:

o LivePlot (plot scalars)
o LiveFit (perform non-linear least squared best

fit)
FileWriter (export to FileSystem)
Elog
Telegram...
LivePlot LiveGrid

10

id 07
1

scan 5c29d4 [1]

0.8

0.6
m
]
a

04

02

0.0

—b -4 -2 0 2 4 6
motar

Luca Porzio - luca.porzio@helmholtz-berlin.de

from ophyd.sim import det, motor
from bluesky.plans import scan
from bluesky.callbacks import LiveTable

dets = [det]
RE(scan(dets, motor, 1, 5, 5), LiveTable(dets))

|
|
|
|
I
+

generator scan ['81631d@a'] (scan

28

HZB

Luca Porzio - luca.porzio@helmholtz-berlin.de 29 HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

IPYTHON MAGICS

* [Pythonis an interactive python interpreter. It has a very

useful feature called “magics”.

* Magic commands act as convenient functions where
Python syntax is not the most natural one.

» They help scientists to write instructions in a more
clean way and less prone to syntax errors.

» Bluesky comes with a set of useful magics.

* ltispossible to create custom magics and load them
into the environment.

Luca Porzio - luca.porzio@helmholtz-berlin.de

from bluesky.magics import BlueskyMagics
get _ipython().register _magics(BlueskyMagics)

from ophyd.sim import motorl

%mov motorl 42

is equivalent to

\ 4

from ophyd.sim import motorl
from bluesky.plan_stubs import mv

RE(mv(motorl, 42))

0 If IPython's ‘automagic’ feature is enabled, IPython will even
let you drop the % as long as the meaning is unambiguous:

30

%»mov motorl 42 —— > mov motorl 42

HZB

BLUESKY TRAINING
EPICS COLLABORATION MEETING - SPRING 2024

SUMMARY: BLUESKY IN A NUTSHELL

Live, Streaming Data: Available for inline visualization and processing.

*Rich Metadata: Captured and organized to facilitate reproducibility and searchability.
*Experiment Generality: Seamlessly reuse a procedure on completely different hardware.
Interruption Recovery: Experiments are “rewindable,’ recovering cleanly from interruptions.

«Automated Suspend/Resume: Experiments can be run unattended, automatically suspending
and resuming if needed.

*Pluggable I/O: Export data (live) into any desired format or database.

*Customizability: Integrate custom experimental procedures and commands, and get the |/O
and interruption features for free.

*Integration with Scientific Python: Interface naturally with numpy and Python scientific
stack.

Luca Porzio - luca.porzio@helmholtz-berlin.de 31 HZB

Luca Porzio - luca.porzio@helmholtz-berlin.de 32 HZB

	Slide 1: Experiments Orchestration with Bluesky
	Slide 2: Architecture Overview
	Slide 3: Architecture Overview
	Slide 4: Abstraction Layer with ophyd
	Slide 5: INTERACT WITH devices
	Slide 6: device status object
	Slide 7: Add complex behaviors
	Slide 8: use standard classes
	Slide 9: Examples
	Slide 10: Architecture Overview
	Slide 11: Bluesky run engine
	Slide 12: plans
	Slide 13: plans
	Slide 14: plans
	Slide 15: Examples
	Slide 16: interruptions
	Slide 17: interruptions
	Slide 18: interruptions
	Slide 19: Examples
	Slide 20: Architecture Overview
	Slide 21: Documents & metadata
	Slide 22: Documents & metadata
	Slide 23: Adding metadata
	Slide 24: Examples
	Slide 25: Architecture Overview
	Slide 26: Data processing using callbacks
	Slide 27: Data processing using callbacks
	Slide 28: Visualization and export
	Slide 29: Examples
	Slide 30: Bonus: Ipython magics
	Slide 31: Summary: bluesky in a nutshell
	Slide 32: Questions?

