J. Bundesmann, A. Denker, T. Damerow, A. Dittwald, T. Fanselow, D. Hildebrand, I. Ja, I. Kailouh, M. Kang, G. Kourkafas, S. Ozierenski, R. Pena Freitas Mendes, J. Röhrich, C. Zimmer

D. Cordini, J. Heufelder, S. Seidel, R. Stark, A. Weber

A. Akin

G. Dollinger, M. Mayerhofer, J. Neubauer, J. Reindl, A. Rousseti

Operation of the HZB Cyclotron

Medical Application and its Challenges Experimental Mode and Special Features Extension Plans

BHT Berliner Hochschule für Technik

Universität

Layout of the accelerator complex

- k = 130 isochronous sector cyclotron
 10 20 MHz
- two injectors:
 - 2 MV Tandetron[™]
 - 6 MV Van-de-Graaff,
 backup, time structures
- three target stations:
 - treatment room
 - experimental station
 - beam line end for tests in cyclotron vault

Beam Time Distribution

• main user:

Charité – Universitätsmedizin Berlin for proton therapy of ocular melanoma

Ocular Melanoma

Treatment Possibilities:

- enucleation (removal of the eye) if tumour is too large
- irradiation with radioactive plaques (small tumours, away from critical structures)
- stereotactic irradiation (e.g. Cyberknife) high radiation level for eye, macula, and optic nerve
- proton therapy

Proton Therapy of Ocular Melanoma

• photons:

increase of dose after skin due to build-up effect exponential reduction after maximum (infinite range)

• electrons:

build-up of dose due to secondary electrons finite range (charged particle)

• protons:

low dose in entrance channel no dose after proton has stopped

- HZB: proton energy of 68 MeV
- well adapted energy: sharp distal fall-off, less than 1 mm 90% - 10% of dose
- enough beam current, treatment time < 1 minute/fraction

protons permit confinement of dose to tumour

Helmholtz Zentrum Berlin

relative dose

monoenergetic focussed proton beam from accelerator

- monoenergetic focussed proton beam from accelerator
- scattering foil widens the beam

range shifter defines maximum penetration depth

- monoenergetic focussed proton beam from accelerator
- scattering foil widens the beam
- range shifter defines maximum penetration depth
- modulator widens the Bragg peak

CHARITÉ

fixation light

- monoenergetic focussed proton beam from accelerator
- scattering foil widens the beam
- range shifter defines maximum penetration depth
- modulator widens the Bragg peak
- individual aperture defines proton field in x and y

CHARITÉ

• protons from the left

CHARITÉ

HZB Helmholtz Zentrum Berlin CHARITÉ

Proton Therapy: Imaging

- Fundus photo shape of tumour tumour position tumour-macula-distance tumour-papilla-distance
- Operation: suturing of clips clip-tumour distance clip-limbus distance
- Ultrasound of eye
 length of eye
 tumour thickness
 tumour length and width
 clip-papilla-distance
- eye-CT / MRT

verification of eye and tumour geometry

Papille

Ø 1,5 mm

HZB Helmholtz Zentrum Berlin CHARITÉ

Proton Therapy: Treatment Plan

- from imaging: digital eye model adapted to real shape of the eye
- permits the calculation of the dose distribution with a treatment planning system (Octopus, developed jointly with the DKFZ)
- treatment plan provides information necessary information
 - position of clips in space
 - range shifter
 - modulator
 - line of vision to fixation light
- treatment plan provides dose distribution

fixation light

Proton Therapy: Patient Preparation

mask and bite block on high-precision adjustable chair

Proton Therapy: Verification of Patient Positioning

 digital X-ray system the first in ocular proton therapy (1998)

CHARITÉ

Proton Therapy: Verification of Patient Positioning

• automatic calculation of the correction vector for patient positioning in 6 DOF:

HZB Helmholtz Zentrum Berlin

- 3 translations (left/right, up/down, forward/backward)
- 3 rotations of the eye
 (polar, azimuthal, twist/collimator)

Proton Therapy: Verification of Patient Positioning

after correction of patient position

HZB Helmholtz Zentrum Berlin

Proton Therapy: Patient Preparation

HZB Helmholtz Zentrum Berlin CHARITÉ

Proton Therapy: Patient Irradiation

- prescribed dose is applied in 4 sessions:
- choroidal melanoma
 4 times 15,0 CGE = 60 CGE
- iris melanoma 4 times 12,5 CGE = 50 CGE
- choroidal haemangioma 4 times 5,0 CGE = 20 CGE (CGE = Cobalt Gray Equivalent, with RBE = $1.1 \Rightarrow 1$ CGE = 1.1 Gy)
- 1 fraction ~ 30 seconds 60 seconds
- high intensities required

• Protons:

HZB Helmholtz Zentrum Berlin CHARITÉ

Proton Therapy: Results

- Tumor control after 5 years:
 - Ru-106: 80 98% weighted average: 91%¹
 - I-125: 82 99% weighted average: 91%¹
 - **90 99% weighted average: 96%**^{1,2}
 - LINAC (SRT): 85 96% weighted average: 94%^{1,9}
 - Cyberknife: 71 84% weighted average: $81\%^{4,5}$
- Eye preservation after 5 years:
 - Ru-106: >90%¹⁰
 - I-125: ~90%⁸
 - Protons: >90%^{2,6}
 - LINAC (SRT): ~78%⁹
 - Cyberknife: ~81%^{4,5}

• Literatur (Auswahl):

¹Chang: Brit J Ophthalmol. 2013; ²Egger: Int J Radiat Oncol Biol Phys 2001; ³Seibel: Am J Ophthalmol 2015; ⁴Liegl: Am J Ophthalmol 2023; ⁵Yazici: Int J Radiat Oncol Biol Phys 2017; ⁶Mishra: CCO 2016; ⁷Krause: Diss.2015; ⁸Vonk: Brachytherapy 2015; ⁹Dunavoelgyi: Int J Radiat Oncol Biol Phys 2011; ¹⁰Verschueren: Radiother Oncol 2010

(Charité: ca. 92%⁷)

(Charité: ca. 96%³)

(Charité: ca. 95%⁷)

(Charité: ca. 95%3)

Proton Therapy: Challenges for the Accelerator - Energy

- HZB: proton energy of 68 MeV
- well adapted energy: sharp distal fall-off, less than 1 mm for 90% - 10% of dose
- ideal for small structures like eyes (~ 24 mm diameter)
- high-energy accelerators (230 MeV 250 MeV) with commercial ocular treatment line:
 1.8 mm up to 4.4 mm for 90% - 10% of dose (based on PTCOG ocular proton therapy survey 2022)

Proton Therapy: Challenges for the Accelerator - Intensity

- HZB: proton energy of 68 MeV
- due to adapted energy: efficient beam adaptation
- high intensities in the treatment room
 - ⇒ dose rates up to 35 Gy/min
 - ⇒ comfortable short irradiation times for the patient
- high-energy accelerators (230 MeV 250 MeV) with commercial ocular treatment line: one exception, all other between 3 Gy/min and 15 Gy/min (based on PTCOG ocular proton therapy survey 2022)

Proton Therapy: Challenges for the Accelerator - Stability

- beam intensity is monitored on-line during the treatment
- fast beam intensity changes lead to automatic interruption of the beam
- measured on Faraday cup after the cyclotron: less than 2%

Proton Therapy: Challenges for the Accelerator - Availability

Helmholtz

- only 1700 hours of scheduled beam time: major events → huge impact on statistics
- most errors appear during start-up of accelerator
- with few exceptions: downtime < 5%
- good performance in spite of:
 - problems with suppliers (main issue: ultra long delivery times)
 - new safety regulations, requiring exchanges of perfectly working parts
- good performance thanks to huge efforts of the staff

Proton Therapy: Challenges for the Accelerator - Reliability

 major events: cyclotron 160 • 2015: human error 140 -Others - increase of injector voltage too fast Cyclotron ົອ^{120 →} **Beamline** 2021: high power coaxial feedthrough Injectors leaking – shifting of therapy week necessary (shifting counts as downtime) **Control System** 5% downtime 80 - 2023: severe cyber attack 60 control system extremely stable 40 20

0

Helmholtz Zentrum Berlin CHARITÉ

07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

year

Proton Therapy: Challenges for the Accelerator – Control System

- origins of the accelerator date back to the 70s: PDP 11, MUMTI (Multi User – Multi Task – Interface) with touchscreens!!
- decision in the 90s: create new control system using V-Systems (the commercial version of EPICS)
- challenge: installation of new control system parallel to accelerator operation, no long shut-downs available
- over the years: different control systems moved in
 - Tandetron: own control-system from accelerator supplier
 - Low Level RF control: based on EPCIS
 - beam diagnostics and experimental control: based on LabVIEW
- need to communicate to each other
- lock parameters when treatment operation

Low Level RF Control

- old low level RF control based on wire wrapped cards relatively compact despite the large number of components repair and maintenance more difficult
- in-house development was rejected due to lack of personnel and time
- collaboration with iThemba Labs
- signals are read or output via Beckhoff EtherCAT terminals
- two server PCs with Linux
- EPICS based user interface
- reduction in downtime of the RF

EXPERIMENTAL MODE

Beam Time Distribution

- main user: Charité – Universitätsmedizin Berlin for proton therapy of ocular melanoma
- accelerator R & D (ARD):
 - beam delivery for Flash irradiations (extremely high doses in short times)
 - beam profile monitors "behind" the cyclotron
 - "Cocktail beams": 90 MeV ${}^{4}\text{He}^{2+}$ and 45 MeV H_{2}^{+}
- Dosimetry and Medical Physics (MML):
 - irradiation of cells and organoids under conventional and FLASH conditions collaboration with Charité and others
- Radiation hardness tests (Radhard):
 - external users, e.g. DLR, universities, industry

FLASH experiments

- parallel to tumour treatment: ongoing research and development
- wish: reduction of side effects

 (e.g. radiation induced retinopathy 1 -2 years after treatment)
- one idea: increase dose rate = so called FLASH irradiations
- standard for ocular tumours: 15 Gy in 30 s to 60 s \rightarrow dose rate less than 0.5 Gy/s
- definition of FLASH irradiations: dose rate > 40 Gy/s, irradiation time < 1 s
- currently ideal combination irradiation time versus dose rate unknown
- medical physicists: precision of dose delivery must be better than 3%
- challenges:
 - dosimetry: linearity, saturation effects, …
 - reliable beam delivery: beam stability, same dose from shot to shot, …

Timing Issues

 ideal: instant opening and closing of the beam shutter and no delays

> instantaneous, rectangular intensity (dose rate) curve

- reality:
 - $t_1 = delay from open command to start opening$
 - $t_2 = opening time$
 - $t_3 = closing command$
 - t₄ = delay from closing command to start closing
 - t₅ = closing time

Beam intensity stable = Excess dose constant

Possible Beam Shutters

- normal Faraday Cups (in total 16 at various positions):
- opening/closing time ~ 150 ms (50 mm stroke)
- >>too slow
- mechanical shutter in front of treatment room:
 - opening time 20 ms/delay 40 ms
 - closing time 10 ms /delay 40 ms
- no issue for conventional irradiation (30 s to 60 s)
- electrostatic kicker
 - opening / closing time : < 1 μs</p>
 - delay ~ 100 μs

EXPERIMENTAL MODE

Experimental Set-up

Faraday cup with interlocks, e.g. radiation safety (not in image)

HZB Helmholtz Zentrum Berlin

- either mechanical shutter OR electrostatic kicker (not in image)
- a) two ionisation chambers for dose monitoring (>>redundancy)
- b) Advanced Markus chamber in water phantom for absolute dosimetry

OR

sample to be irradiated

Important:

use of spread out Bragg peak (modulator wheel for 6.4mm) No shoot through with full energy!!

EXPERIMENTAL MODE

Hardware

- Embedded system: sbRIO 9637 from NI
- Ionization chamber 7861 from PTW Freiburg with I/U-Converter DPLCA 200 from FEMTO

Software

• LabVIEW from NI

Absolute Dosimetry

 Unidos with Advanced Markus chamber, both from PTW Freiburg (medical device for dose / dose rate)

Distributed Tasks

- PC: receives / displays streamed data, generates start signal, saves streamed data in file after start, calculates dose factors
- embedded system:
- ARM CORTEX: communication PC<>FPGA, streaming data every 100 ms
- FPGA: 10kHz sampling rate, all timing tasks and data collection

HZB Helmholtz Zentrum Berlin CHARITÉ

Timing Issues

 ideal: instant opening and closing of the beam shutter and no delays

→ instantaneous, rectangular intensity (dose rate) curve

- reality:
 - $t_1 = delay from open command to start opening$
 - $t_2 = opening time$
 - $t_3 = closing command$
 - t₄ = delay from closing command to start closing
 - $t_5 = closing time$
- real signal from ionisation chamber here: fixed time of 500 ms

- **1.** CALIBRATION (setup with absolute dosimetry)
 - 1. set beam intensity to desired dose rate
 - 2. select fixed time window T_{Cal} (10ms to 500ms)
 - start Beam Pulse [switch off is given by Time] and measure calibration dose D_{cal} (Gy)
- 2. VERIFICATION (setup with absolute dosimetry)
 - 1. set Dose D to applicate (must be smaller than calibration dose)
 - 2. start Beam Pulse [Switch off is given by Dose excess Dose] and measure Dose D (Gy)
 - 3. repeat it (several trial runs for statistics)
- 3. "TREATMENT" (replace water phantom with sample)
 - 1. same dose D as during verification
 - 2. irridiate your samples

Takes only a few minutes

Safety Measures

- if beam intensity changes for more than 5%: verification and "treatment" is vetoed
 -> new calibration and verification is necessary
- both ionisation chambers are integrating dose independently: the first chamber reaching the dose equivalent switches off beam
- in case both ionisation chambers fail: after the time used during calibration the beam is switched off

• BUT: no medical device – not yet certified

CHARITÉ

Helmholtz

Scientific results: FLASH irradiation of single mice eyes

- control group: conventional irradiation mode, 0.25 Gy/s, 60 s total irradiation time = 15 Gy, statistically no fluctuations in dose,
- FLASH , dose rate 75 Gy/s , 200ms, 30 trial runs to estimate error:

14.9 Gy with a standard deviation of 0.6%

- first publications with mechanical shutter: G. Kourkafas et al., FLASH proton irradiation set-up with a modulator wheel for a single mouse eye, Medical Physics 48 (2021) 1839-1845
- work in progress with electrostatic shutter

WILEY Top Downloaded Article

CHARITÉ

EXPERIMENTAL MODE

Dosimetry

- investigating linearity of dosemeters
- development of a transmission ionization chamber which is linear up to 1 kGy/s
- development of a depth profile camera
- development of a Multi-Leaf Faraday Cup, PhD Thesis C. Kunert
- company de.tec.tor licensed the MLFC and made a full certified medical device

center center 690	center 🖉 509	Graph	
roi_size		-30 -20- -20-	300 500 nnn ≻
30		-15-	500 mplitude
2000-		-10-	90
1000		E E Inter	nsity
[ms] [Gr	aph
100			ig_level
		15-	dth [%]
10		20- trigge	red_%
	Buffer Frame Rate	22-22 -15 -10 -5 0 5 10 15 20 22 29. profiles mm Profil X A unit	.677
1- path_loaded file ic 8 D'idet lime 2022-09-17	1240, 0 0 0	2500-	nm)
	manual select	dx 1 1500-	2.28 0
new image	es move move	1	
ref_pos_xy_table prefix 99.99/ FLIR	profile_x profile_y 466 286	0	тор

Radiation Hardness Tests – External Users

- beam in air
- quasi DC or pulsed
- 0.1 pA to 10 nA (DC) on target (above: special rad. safety required)
- 0.5 mm < ø < 45 mm
- 25 MeV < E < 68 MeV (rapid: insertion of Al plates)
- on-line-dosimetry with transmission ionisation chamber
- beam shape visualized via 2D-camera
- well suited for radiation hardness tests often in conjunction with tests on in-house ⁶⁰Co-source

2004 parts of the Rosetta electronics irradiated 2014: successful end of hibernation movement sensor of DLR – moved during irradiation

New Target Stations

- increased demand on beam time
- increased variety of experiments
- beam time not used due to change of experiment set-up
- > new target station dedicated to radiation hardness test: In-Operando-beam line
- → more time for experiment preparation
- collaboration with *Universität*
 - new target station for minibeams

Target Station for Radiation Hardness Tests: In-Operando beamline

- provide more space for accompanying equipment, e.g. sun simulator
- after irradiation: additional off-line measurements possible samples can stay in control area
- to do:
 - open wall between cyclotron vault and beam line room
 - check for radiation safety
 - enhance system of dose meters
 - perform beam line simulations
 - install beam line
 - install control system
 - commissioning
- applies also for 2nd target station with minibeam

EXTENSION PLANS

Proton Minibeam Radiotherapy (pMBRT) - the concept of spatial fractionation

Slide by Prof. Dr. Judith Reindl

judith.reindl@unibw.de

der Bundeswehr

HZB Helmholtz Zentrum Berlin Universität K München **EXTENSION PLANS**

Proton Mini-Beamline:

- installation of a SARRP (Small Animal Radiation Research Platform)
- generate magnetically focused proton minibeams with
 - a beam size (σ) of 50 μ m in vacuum ____
 - a centre-to-centre _ distance in the mm range
 - current of ~ 1 nA

Proton Mini-Beamline:

• Beam line simulations performed with BDSIM:

Current Status of MINIBEE – Minibeam Beamline for Preclinical Experiments on Spatial Fractionation in the FLASH Regime A. Rousseti , G. Dollinger, M. Mayerhofer, J. Neubauer, J. Reindl, Universität der Bundeswehr München J. Bundesmann, A. Dittwald, A. Denker , M. Kang, G. Kourkafas, HZB IPAC 2024

EXTENSION PLANS

Installation of New Beamlines: To do

open wall between cyclotron vault and beam line room

on-going

on-going

- check for radiation safety
- perform beam line simulations
- install beam line
- enhance system of dose meters
- install control system: after excellent experiences with LLRF: EPICS

 commissioning planned for winter 2024 last quadrupole for minibeam coming later

der Bundeswehr

Conclusion

- medical application: more than 4700 patients treated
 - = 10% of the worldwide ocular melanomas irradiated with protons
- lively research and development program

- new target stations under construction: In-Operando beam line and MHMBE
- control system for new beam lines: EPICS

Thank you for your attention!

patient statistics based on the apertures used

Modernization of Accelerator Complex: Ideas

- use existing building to install a new cyclotron

 → parallel installation to accelerator operation possible
 → adapt existing beam line
- wishlist: about 70 MeV protons, 280 MeV He
 - maintain sharp distal fall-off
 - enhance possibilities for radiobiological research
- experiments with "Cocktail-beams"
 - \Rightarrow 140 MeV H₂⁺ and 280 MeV He²⁺
 - ⇒ same magnetic field, adjust RF frequency

Modernization of Accelerator Complex: Tasks

- cyclotron:
 - concept study assigned to AIMA development
- building:
 - architect evaluated existing building and estimated modernization costs
 - comparison to costs of new building
- beam line design:
 - investigate necessary changes
- write down research programme:
 - radiation hardness tests
 - radiobiology
 - dosimetry
 - therapy
- autumn 2024: present conceptual design report to directors

fun fact: new building might be cheaper!

Deutsches Zentrum für Luft- und Raumfahrt + others CHARITÉ PHI Berliner Hochschule Universität München

HZB Overview and Research Topics

- former research reactor BERII, out of operation since 12/2019
- cyclotron
- electron synchrotron BESSY II
- core labs
- ~ 1200 people at two scientific locations

- photon science
- photovoltaics
- solar fuels / catalysis
- electrochemical energy storage
- quantum and functional materials
- accelerator research

