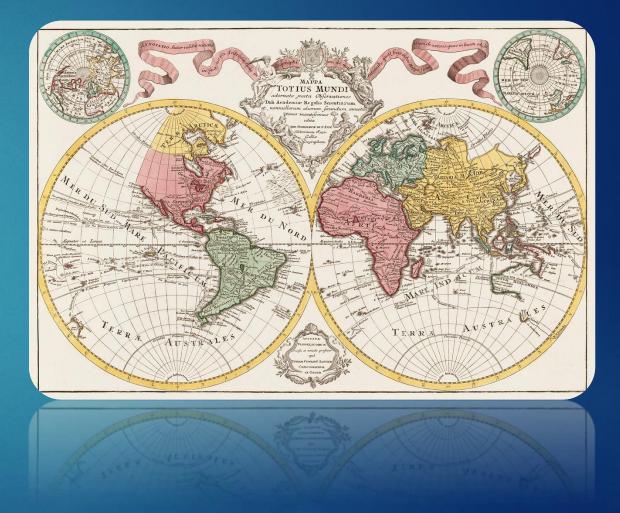
Adventures of an EPICS **Developer: Navigating Across** International Control **Systems**

MAURIZIO MONTIS MAURO GIACCHINI

EPICS SUMMER SCHOOL BERLIN, 06TH AUGUST 2024

Control Systems


2

What is a Control System?

Contents

3

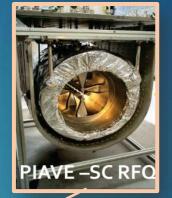
LNL Facilities and SPES Project (Italy)
 IFMIF Project (Japan)
 ESS Project (Sweden)

LNL Facilities and SPES Project

ITALY: WHERE EVEN THE TRAFFIC JAMS HAVE STYLE, AND ARGUING WITH YOUR HANDS IS CONSIDERED AN ART FORM

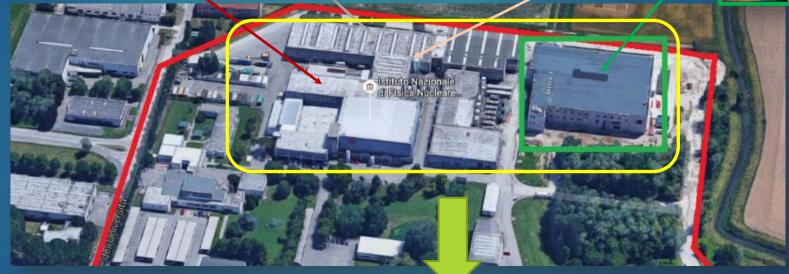
INFN and Legnaro National Labs

5



Maurizio Montis, Mauro Giacchini

INFN and Legnaro National Labs



6

SPES Project

Maurizio Montis , Mauro Giacchini

Adventures of an EPICS Developer

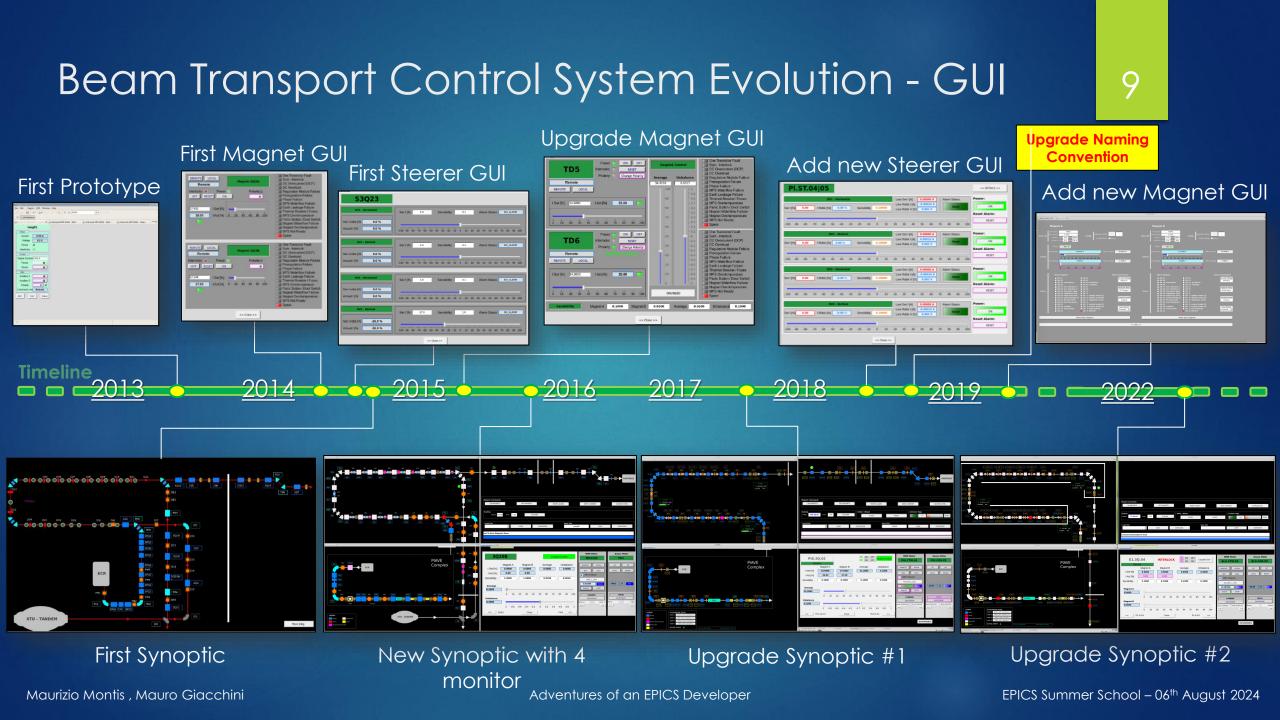
EPICS Summer School – 06th August 2024

SPES @ Legnaro National Laboratories 7

Selective Production of Exotic Species at LNL

Exotic Beam Facility for Nuclear Physics studies Primary Beam: up to 1 mA, 70 MeV protons Production Target: UCx 10¹³ fission sec⁻¹ Post Accelerator: ALPI Superconductive Linac up to 11 AMeV for A=130

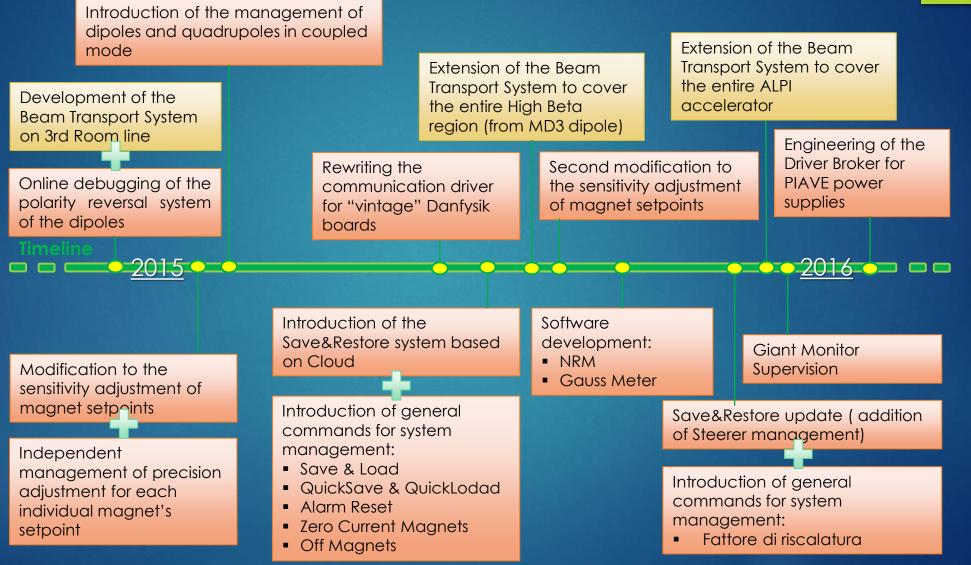
Beam Transport Lines for PIAVE-ALPI lines


Neutron Facility for Astrophysics, Medical and Materials Physics Applications Primary High Intensity proton Beam Energy: 5 MeV - Current: 30 mA Thermal neutrons up to 10° n cm⁻² sec⁻¹ Fast neutrons up to 10¹⁴ n sec⁻¹

Legnaro

PIAVE-ALPI Beam Transport Lines

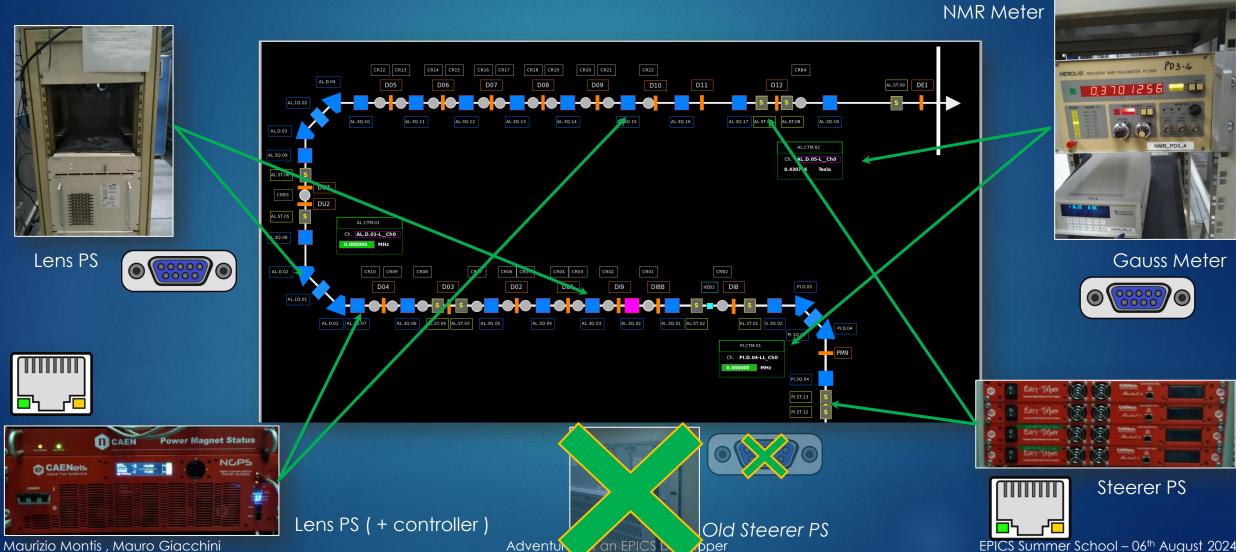
Synoptic from Human-Machine Interface



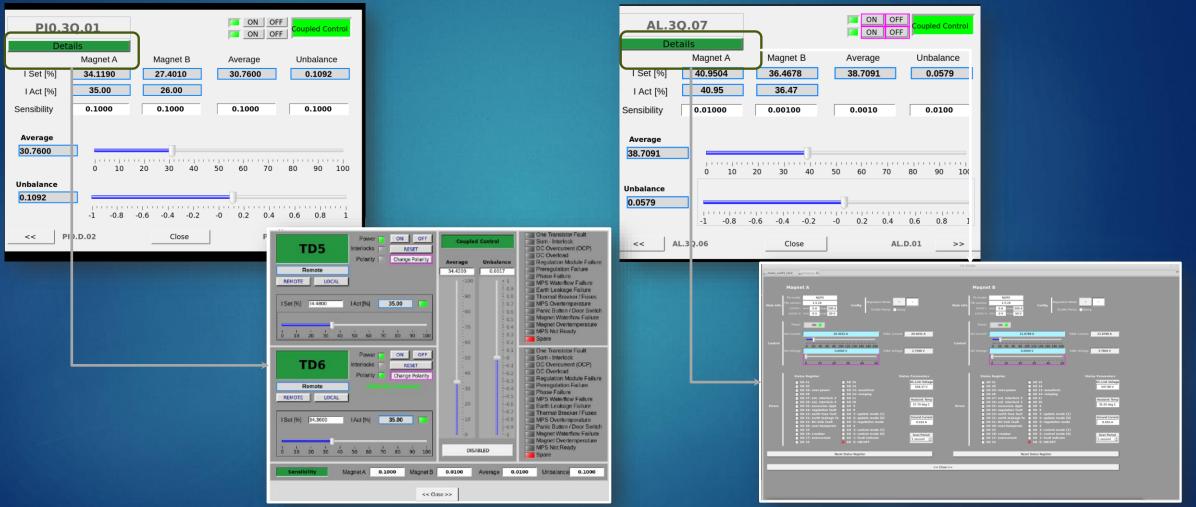
Maurizio Montis, Mauro Giacchini

Adventures of an EPICS Developer

Beam Transport Control System Evolution


11

Adventures of an EPICS Developer


Hardware used in the PIAVE-ALPI lines¹²

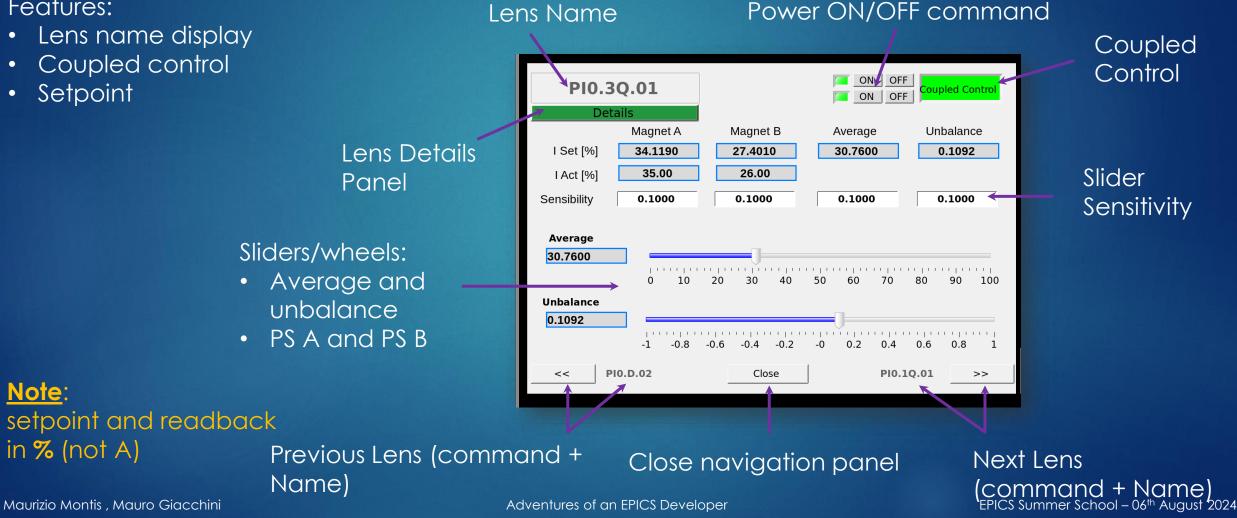
Lens Control

Danfysik Power Supply

Caenels Power Supply

Maurizio Montis , Mauro Giacchini

Adventures of an EPICS Developer


Features:

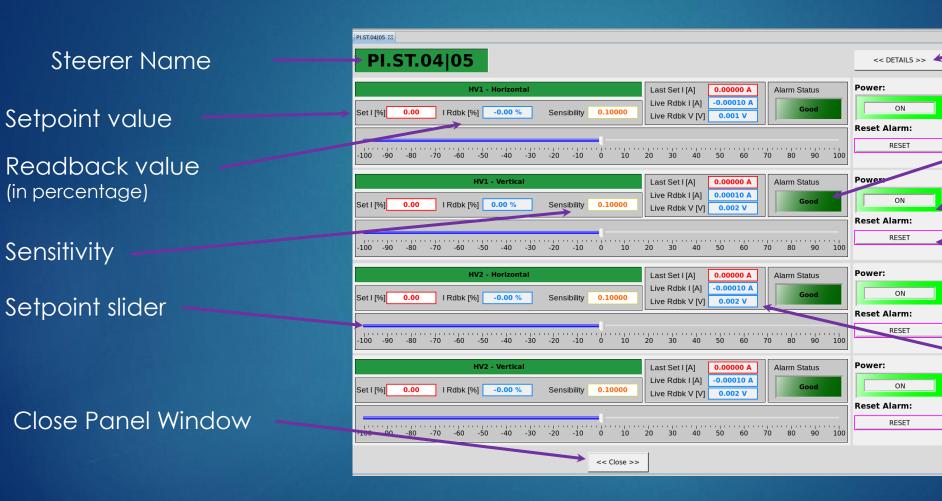
Lens name display

Lens Control

- Coupled control
- Setpoint

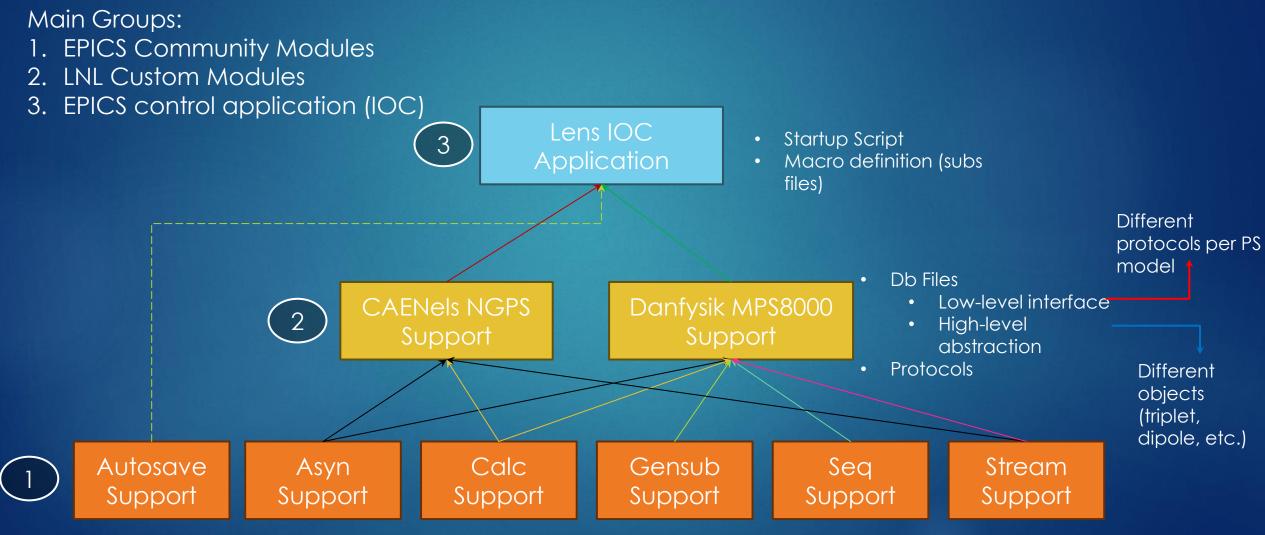
Note:

Steerer Control


15

Details Panel

Alarm Status **Power Command Reset** Command


Readback values (in Ampere/Volt)

Note: setpoint in % readback in A

Sensitivity

EPICS Software Structure for Lens Control

Maurizio Montis, Mauro Giacchini

Adventures of an EPICS Developer

EPICS Summer School – 06th August 2024

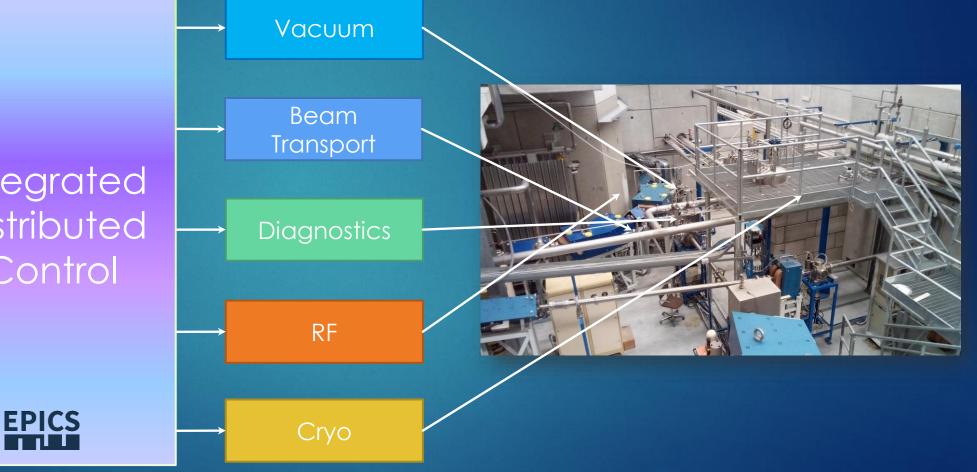
Beam Transport System in Numbers

17

August 2024

Number of EPICS IOCs (*) 1 1 1 1 1 1 1	8 (lens) 1 (NMR) 1 (gauss meters) Magnets: 70	11 (lens) 18 (steerers)
	Magnets: 70	
	NMR: 3 Gauss Meters: 3	Magnets: 11 Steerers: 18
Number of EPICS Variables	~ 5000 PVs	~ 8500 PVs
	(*) All the IOCs run in Virtual Mach	hines: Hypervisor

The consequences of adopting EPICS 18



Integrated Distributed Control

The consequences of adopting EPICS¹⁹

Accelerator Line Automatic Optimization based on PSO algorithm (AI/ML techniques):

PSO problem: $\mathbb{R}^{6} \to \mathbb{R}$ (middle LINAc FC) and $\mathbb{R}^{10} \to \mathbb{R}$ (final LINAc FC)

Target PSO Execution Element Time		Transmission		
(Faraday (PSO main Cup) params)	No corrector	Manual Optimization (operators)	Automatic Optimization (PSO)	
middle LINAc Faraday Cup	30 min pop size: 20 iterations: 10	15%	41%	56.2%
final LINAc Faraday Cup	1h pop size: 30 iterations: 1 <i>5</i>	1% - 2%	24.5%	35%

PSO – Particle Swarm Optimization

3		Det	¥ I	20
2		18	2	15
1			2	10
		6		5
-1				0
-2	$\bigcirc)$.5
-3 -2 -	1 0	1 2	3	2

Pubblication: L. Bellan et al., "New techniques method for improving the performance of the ALPI Linac", Journal of Instrumentation, vol. 19, T03005, March 2024. DOI:10.1088/1748-0221/19/03/T03005

Maurizio Montis, Mauro Giacchini

Adventures of an EPICS Developer

EPICS Summer School – 06th August 2024

The consequences of adopting EPICS²⁰

Accelerator Line Automatic Optimization based on PSO algorithm (AI/ML techniques):

PSO problem:

 $\mathbb{R}^{37} \rightarrow \mathbb{R} \quad (middle \ LINAc \ FC)$

Params	Execution Time	Current	
		Manual Optimization	Automatic Optimization
pop size: 25 iterations: -	45 min	43 nA	54 nA
pop size: 25 iterations: 20	1h 30 min	25 - 23 nA	29 - 28 nA
pop size: 25 iterations: 35	2h 30 min	37 - 30 nA	60.7 - 49 nA

Pubblication: L. Bellan et al., "New techniques method for improving the performance of the ALPI Linac", Journal of Instrumentation, vol. 19, T03005, March 2024. DOI:10.1088/1748-0221/19/03/T03005

Maurizio Montis, Mauro Giacchini

Adventures of an EPICS Developer

EPICS Summer School – 06th August 2024

The consequences of adopting EPICS²¹

Accelerator Line Automatic Optimization based on PSO algorithm (AI/ML techniques):

PSO problem:

 $\mathbb{R}^{37} \rightarrow \mathbb{R} \quad (middle \ LINAc \ FC)$

Params	Execution	Current		
	Time	Manual Optimization	Automatic Optimization	
pop size: 25 iterations: -	45 min	43 nA	54 nA	
pop size: 25 iterations: 20	1h 30 min	25 - 23 nA		
pop size: 25 iterations: 35	2h 30 min	37 - 30 nA	1058.35 mA	

Artificial Intelligence and Machine Learning push PIAVE-ALPI accelerator to record performance in 2024

Automatic tuning with **Bayesian algorithm** and mix with **PSO**

Big Achievement (thanks to EPICS)

Adventures of an EPICS Developer

Opensource in Control Systems

Where possible, opensource solutions have been adopted in the Control Systems

- Operative Systems
 CentOS
 Ubuntu
 Control System Framework
 - Virtualization Hypervisors
 - Applications and Services for IT architectures
 - Program Languages and Libraries

Adventures of an EPICS Developer

XPROXMOX XVM

React

IFMIF Project

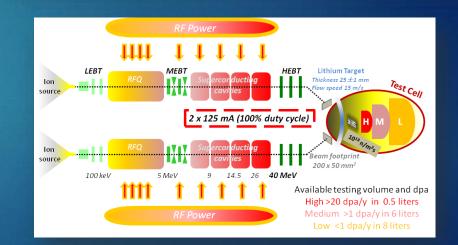
JAPAN: WHERE YOU CAN FIND VENDING MACHINES SELLING EVERYTHING FROM SUSHI TO SOCKS, AND TOILETS THAT GREET YOU WITH A SYMPHONY OF SOUNDS

IFMIF Project

IFMIF (International Fusion Materials Irradiation Facility):

the International Fusion Materials Irradiation Facility, will generate, thanks to two parallel deuteron accelerators, a neutron flux with a broad peak at 14 MeV by Li(d,xn) nuclear reactions that will collide in a liquid Li screen with a footprint of 20 cm x 5 cm.

The energy of the beam (40 MeV) and the current of the parallel accelerators (2 x 125 mA) have been tuned to maximize the neutrons flux to get irradiation conditions comparable to those of a fusion reactor in a volume of 0.5 I that will house around 1000 small specimens.


The successful validation of the small specimens' test technique under the Broader Approach Agreement between Japan and EURATOM will allow the full mechanical characterization of suitable materials, and allow the understanding of the degradation that will lead to the design of constituents better tolerant to radiation

Delear lear rint of

SRF Linac

Injector RFO

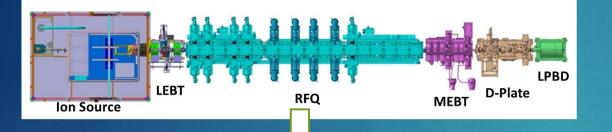
Beam Dump

Li Loop

PIE Detritiation

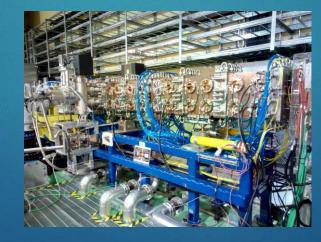
Human

Process

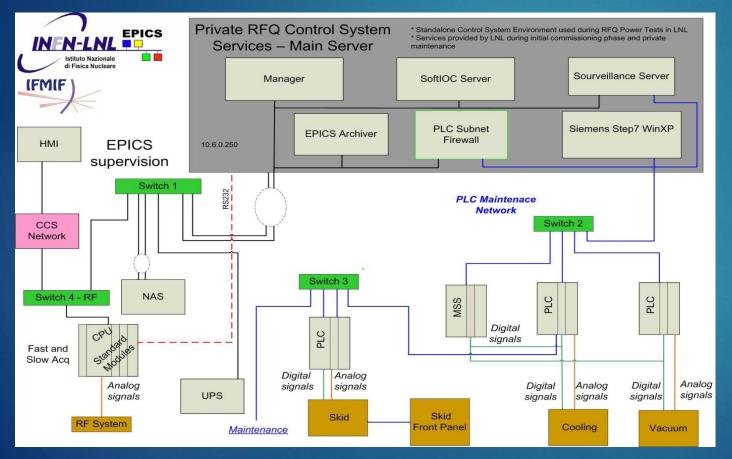

Post Irradiation

Examination

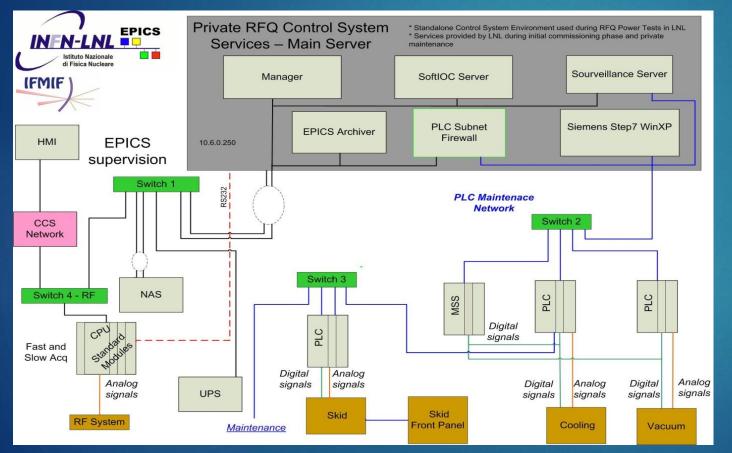
IFMIF-LIPAc Project


IFMIF-LIPAc: Linear IFMIF Prototype Accelerator

The RFQ will pre-bunch the DC beam from the ion source and will accelerate the beam from 0.1 to 5 MeV at max 125 mA current.


RFQ Apparatus is the Italian contribution to the IFMIF-LIPAc project (control included)

LCS: Local Control System



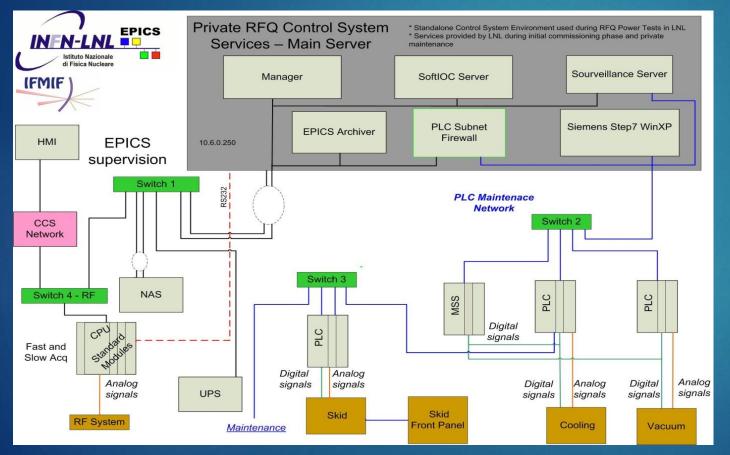
Preliminary design started in 2011

Cutting-edge technologies in that period:

- Virtualization (Qemu, KVM)
- VME systems for fast acquisition
- PLCs for safety and slow safe systems
- Cobbler / Koan for automatic provisioning
- Nagios for network hosts surveillance

LCS: Local Control System

Characteristics of this design:


- Defined to be a standalone control system and interfaceable with Central Control System (CCS)
- 3-Layer architecture
- PLC network as a subnet to the EPICS network Managed via Firewall
- Software:
 - EPICS V3 framework (CA)
 - CSS framework
 - S7-PLC software
 - KVM hypervisor (Virtualization)
- Virtualize as much as possible to optimize space, costs and maintenance EPICS Summer School – 06th August 2024

Maurizio Montis , Mauro Giacchini

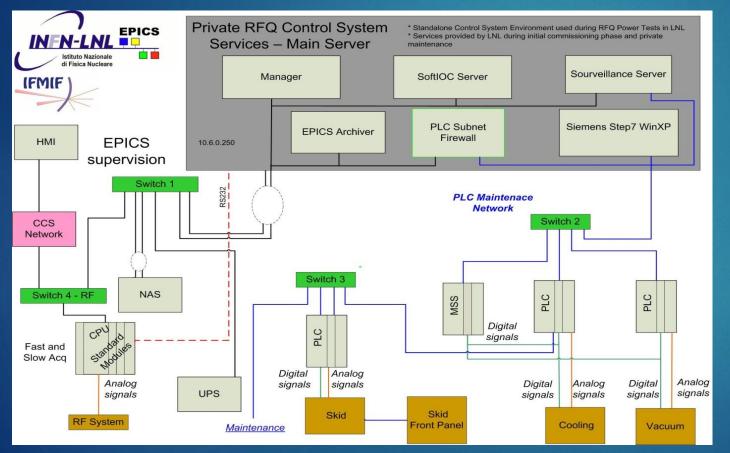
Adventures of an EPICS Developer

28

LCS: Local Control System

Control Loop:

Closed loop between RF and Cooling Systems to minimize frequency detuning into the cavity

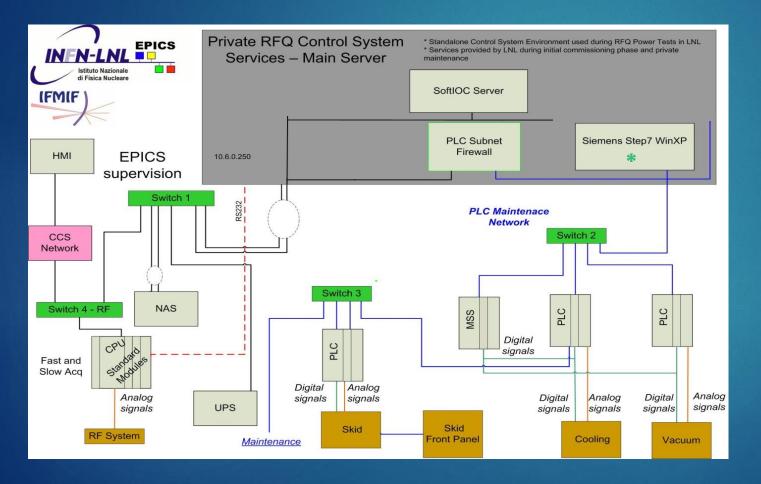

Logics and Algorithms distributed between PLC and EPICS

Functional Subsystems – HW:

- Vacuum: PLC
- Cooling: PLC
- ▶ RF acquisition: VME
- RF analysis: general purpose PC (VM)

29

LCS: Local Control System

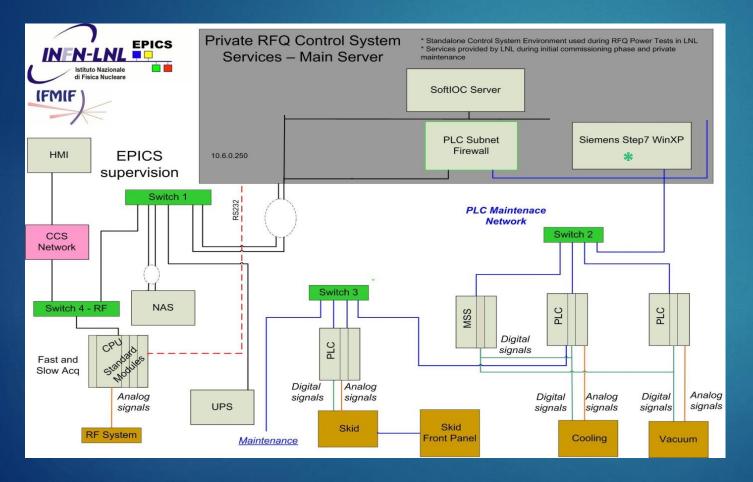

Control System Architecture **validated** during RFQ power tests performed at LNL in 2014:

- Tested a subset of the entire RFQ, also in terms of number of signals
- Provided additional controls for system not directly provided by RFQ LCS but required for the tests

RF System

 Validate design and change technologies and solutions if required (surface temperature story)

IFMIF RFQ LCS Architecture – Final Ver. ³⁰



LCS started Installation in Japan in July 2016

- All the network services were used during first stage of commissioning, then they were substituted by the ones provided by Central Control
- At EPICS level, commissioning went smoothly and fast because:
 - Basic guidelines to follow
 - Simple EPICS architecture adopted
 - Central Control System under implementation in parallel

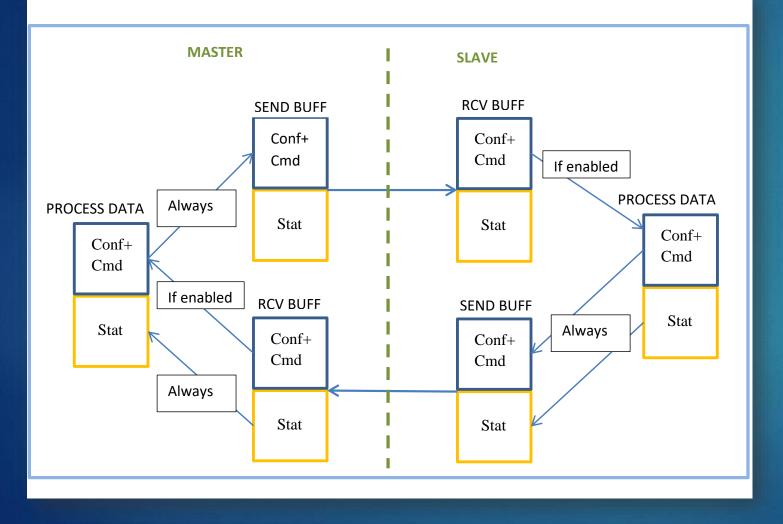
* Used only for maintenance

IFMIF RFQ LCS Architecture – Final Ver. ³¹

LCS started Installation in Japan in July 2016

RFQ LCS SAT (Site Acceptance Test) performed in **December 2017.**

Tests included:


- Documentation (Manuals, Reports, etc.)
- Applications functionality and compliance with Guidelines (EPICS code and PLC code)
- Integration with central tools
- HW and SW interfaces with other LCSs , MPS, PPS and Central Control

IFMIF RFQ LCS in Numbers

Number of	Power Test	Final Stage
IOCs	6	4
EPICS DBs	17	37
EPICS Variables (PVs)	1153	~8000
Channels Archived	970	~1600
GUI panels	15	14

EPICS – PLC Synchronization

EPICS – PLC interface:

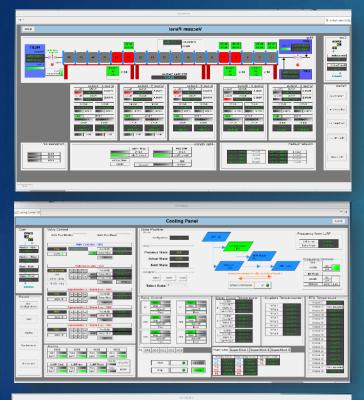
- OPC Server (first solution)
- s7plc EPICS driver (actual solution)

S7plc driver

- is based on send receive over TCP/IP
- Input and output buffers for data exchange between PLC memory and EPICS IOC
- Dedicated logic to orchestrate data update when PLC transit from local to remote mode

IFMIF RFQ LCS HMI

Profile name	Panels	
Main	Navigation Main RFQ 1 Main RFQ 2	
Vacuum_pumps	Navigation Main RFQ 1 Main RFQ 2 Vacuum (principal panel) Vacuum pumps	
Cooling	Navigation Main RFQ 1 Main RFQ 2 Cooling (principal panel) Skid	
RF	Navigation Main RFQ 1 Main RFQ 2 RF analysis (principal panel)	
Oscilloscope	Navigation Main RFQ 1 Main RFQ 2 RF analysis (principal panel) Fast acquisition	
Vacuum + Cooling	Navigation Main RFQ 1 Main RFQ 2 Vacuum (principal panel) Cooling (principal panel)	



Maurizio Montis , Mauro Giacchini

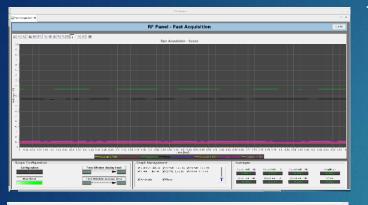
Adventures of an EPICS Developer

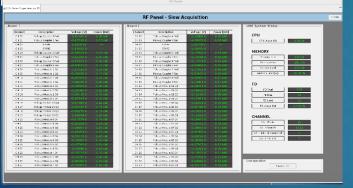
EPICS Summer School – 06th August 2024

IFMIF RFQ LCS HMI

Vacuum:

- Siemens PLC \$7-300
- SIMATIC Step7 programming
- Low-level logic implemented in the PLC code
- > EPICS V3 interface for remote control + LOC/REM sync


<u>Cooling:</u>


- Siemens PLC \$7-300
- SIMATIC Step7 programming
- High-level logic + Low-level logic implemented in the PLC code
- EPICS V3 interface for remote control + LOC/REM sync

RF Analysis:

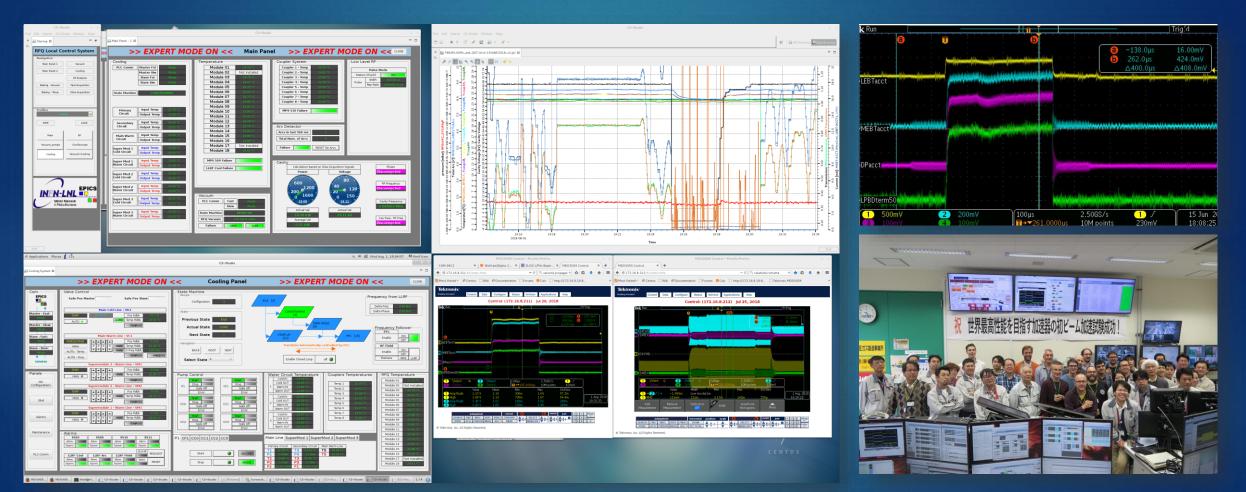
- > EPICS V3 softIOC (pure software application)
- Input: RF pickup signals (fast & slow acquisition)
- > Algorithms (high-level logic) based on state machines (SNL / sequencer)
- GUI graphs provided by EPICS PVs

IFMIF RFQ LCS HMI

Fast and Slow Acquisition:

- VME system (ICV150, ICV108 acq. boards) + VxWorks RT OS
- EPICS V3 IOC embedded in system + custom driver for acquisition boards
- > No high-level and low-level logic

<u>RF Analysis:</u>


- > EPICS V3 softIOC (pure software application)
- Input: RF pickup signals (fast & slow acquisition)
- Algorithms (high-level logic) based on state machines (SNL / sequencer)
- GUI graphs provided by EPICS PVs

Adventures of an EPICS Developer

IFMIF RFQ LCS in Action

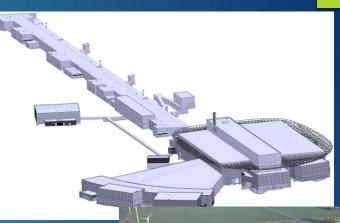
First proton beam injected into the RFQ on 13 June 2018

Maurizio Montis, Mauro Giacchini

Adventures of an EPICS Developer

EPICS Summer School – 06th August 2024

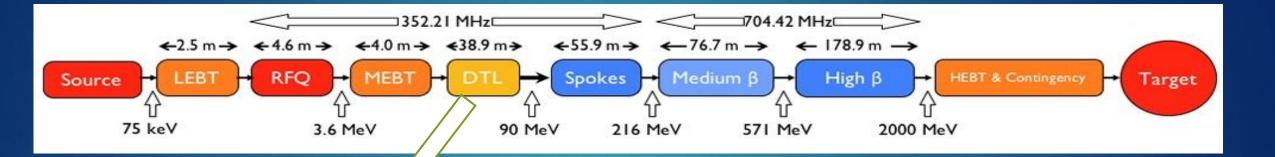
ESS Project


SWEDEN: WHERE MEATBALLS ARE A GOURMET DISH, AND THE ANSWER TO EVERYTHING IS OFTEN JUST A QUICK SAUNA SESSION AWAY

ESS Project

ESS (European Spallation Source):

The European Spallation Source is a multidisciplinary research facility based on what will be the world's most powerful pulsed neutron source. It is currently under construction in Lund, Sweden.


ESS is the world's most powerful next-generation neutron source, and will enable scientists to see and understand basic atomic structures and forces at length and time scales unachievable at other neutron sources

ESS Project – Drift Tube Linac

The DTL is designed to operate at 352.21 MHz, with a duty cycle of 4% (2.86 ms pulse length, 14 Hz repetition period).

Permanent magnet quadrupoles (PMQs) are used as focusing elements on a lattice scheme that is, with half of the drift tubes left empty, leaving space for steerers and beam diagnostics.

The DTL apparatus is composed of 5 macro modules called tanks

DTL Control System Architecture

41

DTL Control System: 3-Layer Architecture

DTL Architecture simplified a lot in the final stage

DTL Control System - Technologies

_____ TCP-IP EPICS Asyn Steerer Steerer Driver Power Supply System Wired Connections Beckhoff Motor IOC Module Driver **Tuner Motor** _____ System Beckhoff Potentiometer Ethernet - CA TCP-IP **EPICS** Asyn Module Driver MoxaBox Driver 1001 Wired Connections IOC Ethernet - CA RS-232 EtherCAT Ethernet - CA Beckhoff DO Module Cryo Pump Ion Pump Gauge **DTL Core** Driver Controller Controller Controller Ethernet - CA **Control System** IOC EtherCAT 100 Wired Connections Wired Connections Alarm Archiver Vacuum System Arc Detector Service Service System Test Board Post HMI Mortem Service Ethernet - CA Ethernet - CA EtherCAT EPICS ESS **EPICS** Network Beckhoff Thermo PLC Driver Sensors Module Driver IOC IOC TCP-IP Wired Connections Cooling System PLC Notes: DTL Thermo 1. Arc Detector Not interface in EPICS in DTL CS (part of Sensors the RF system) Wired Connections 2. Vacuum system only partially developed by INFN-LNL

Sub - System	Technology (SW – HW - Protocol)				
Thermos Sensors	 EPICS integration and supervision Beckhoff hardware EtherCAT protocol 				
Tuners Motor System	 EPICS integration and supervision Beckhoff hardware EtherCAT protocol 				
Vacuum	 EPICS integration and supervision Hardware provided by ESS Serial / TCP-IP communication 				
SKID	 EPICS integration and supervision Hardware provided by tender with PLC Siemens S7-1500 (low level I/O) 				
Steerer System	 EPICS integration and supervision Hardware provided by tender TCP-IP protocol communication 				
Arc Detector	 Hardware system based on AFT Microwave Custom electronic board for Arc testing 				

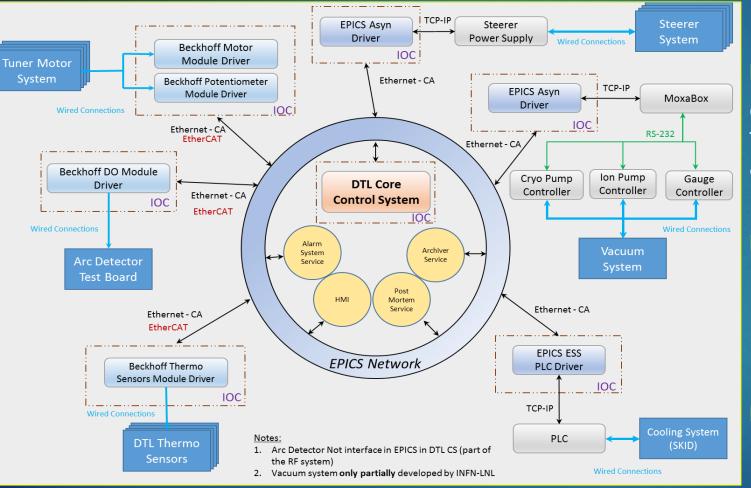
E3 – ESS EPICS Environment

ESS' EPICS Environment (e3) is a design concept and a toolkit intended to

- 1. facilitate development by abstracting away some of the low-level complexities intrinsic to large EPICS implementations (primarily dependency management)
- 2. allow for more manageable quality control of released modules as well as IOCs

It allows for easily building EPICS modules directly from source and automagically resolves module dependencies and allows for site-specific modifications to EPICS modules without needing to directly modify source trees

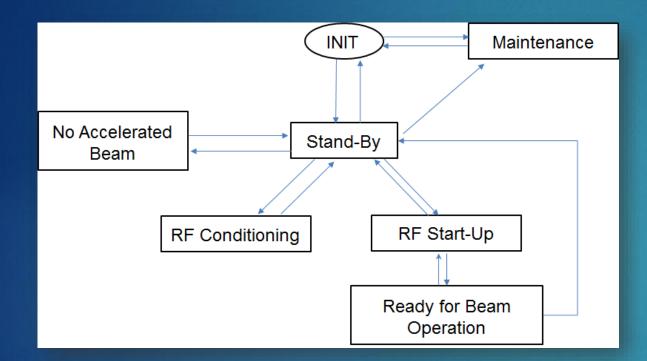
E3 – ESS EPICS Environment


44

E3's impact on the development and implementation of the DTL control system has been significant.

- New way to realize EPICS modules, IOCs, etc.
- E3 already provided all the principal EPICS modules
 - Only few devices had required dedicated development
- Key point was the E3 documentation and ESS ICS support
- Due to the fact E3 evolved though time, the DTL CS implementation had to be updated several times
- Collaboration and teamwork played a crucial role during commissioning stage

ESS DTL LCS


Control Loop:

Closed loop between RF and Mobile Tuner Systems to minimize frequency detuning into the cavity

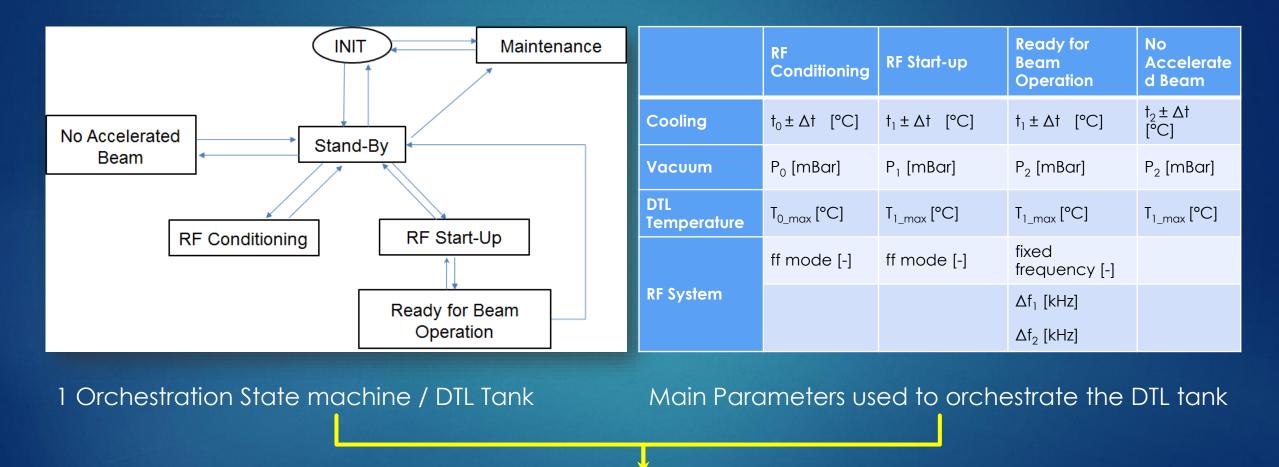
Principal Logic and Algorithms implemented in EPICS (minor logic done at PLC level for SKID)

Defined dedicated EPICS state machines to orchestrate the entire apparatus

DTL High-Level Logic & Orchestration 46

1 Orchestration State machine / DTL Tank

The DTL apparatus will be used to perform two main operations:


- RF Conditioning
- Beam Operation

Additional Status:

- No Accelerated Beam
- Maintenance

NOTE: DTL is composed by 5 independent tanks

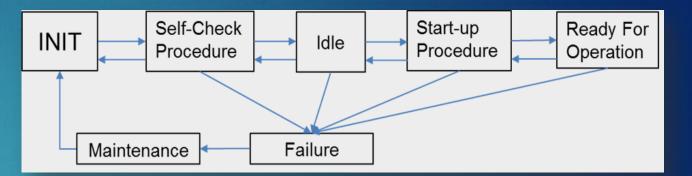
DTL High-Level Logic & Orchestration 47

NOTE: State machine and parameters were defined and identified with the accelerator physics

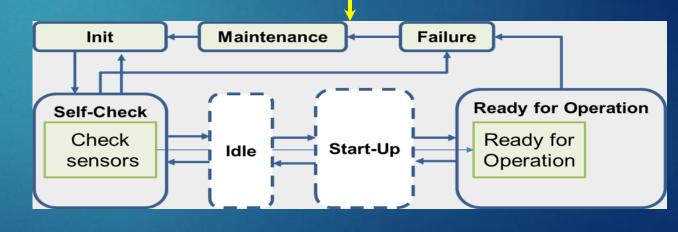
(....aka the client)

Adventures of an EPICS Developer

EPICS Summer School – 06th August 2024


DTL Functional Systema Status

It's important to evaluate every single functional system status:

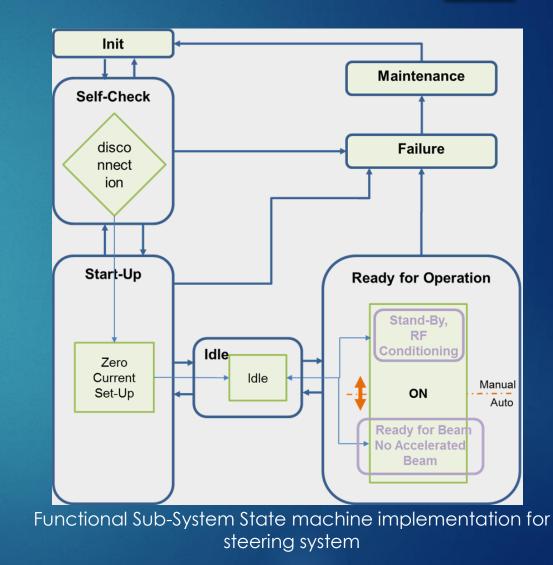

- Cooling
- Steering
- Tuner Motion
- Temperatures

Standardized the state machine model adopted for this activity

Implementation was customized for each single functional system

1 Functional Sub-System State machine / DTL Tank

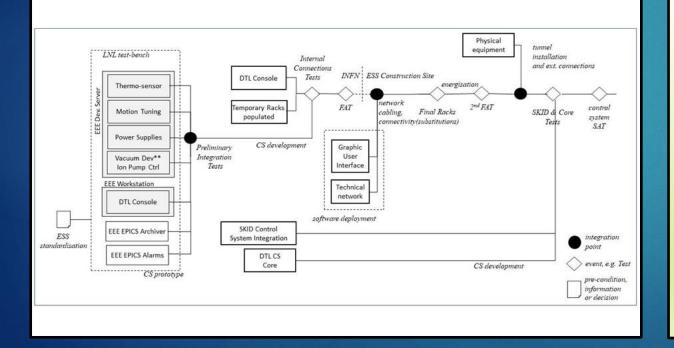
Functional Sub-System State machine implementation for temperature system


DTL Functional Systema Status

It's important to evaluate every single functional system status:

- Cooling
- Steering
- Tuner Motion
- Temperatures

Standardized the state machine model adopted for this activity.


Implementation was customized for each single functional system

Commissioning stage

A complex architecture (not only in terms of control system architecture) requires:

- Good plan
- Useful verification stages

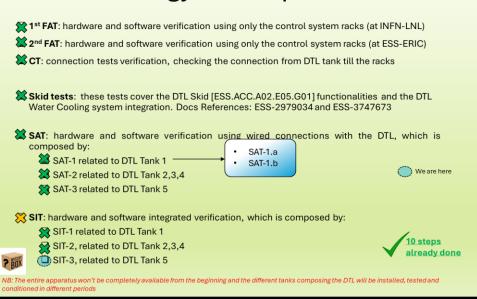
Verification Strategy: 10 Steps 1st FAT: hardware and software verification using only the control system racks (at INFN-LNL) 2nd FAT: hardware and software verification using only the control system racks (at ESS-ERIC) CT: connection tests verification, checking the connection from DTL tank till the racks Skid tests: these tests cover the DTL Skid [ESS.ACC.A02.E05.G01] functionalities and the DTL Water Cooling system integration. Docs References: ESS-2979034 and ESS-3747673 SAT: hardware and software verification using wired connections with the DTL, which is composed by: SAT-1.a SAT-1 related to DTL Tank 1 • SAT-1.b 🔵 We are here SAT-2 related to DTL Tank 2,3,4 SAT-3 related to DTL Tank 5 SIT: hardware and software integrated verification, which is composed by: SIT-1 related to DTL Tank 1 0 steps SIT-2, related to DTL Tank 2,3,4 SIT-3, related to DTL Tank 5 ? BOX NB: The entire apparatus won't be completely available from the beginning and the different tanks composing the DTL will be installed, tested and conditioned in different period

Commissioning stage

A complex architecture (not only in terms of control system architecture) requires:

COVID-19

- Good plan
- Useful verification stages


Compared to the RFQ commissioning, this activity required more time and effort

- First FAT in January 2020 @LNL
- Second FAT in May 2021 @ESS
- First SAT (SAT1) between January and March 2022
- First SIT (SIT1) in March 2022
- Last SAT (SAT3) in March 2024
- Last SIT is ongoing

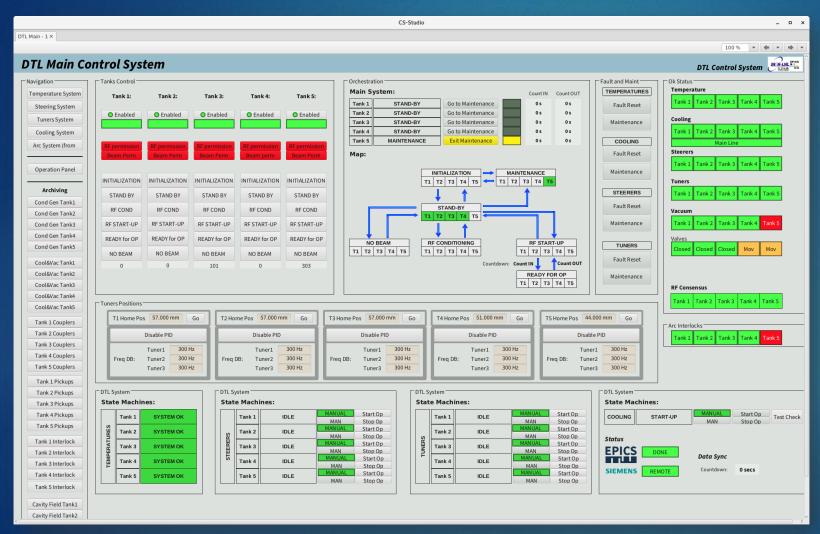
NOTE: no power test performed at LNL

Verification Strategy: 10 Steps

Commissioning stage

A complex architecture (not only in terms of control system architecture) requires:

- Good plan
- Useful verification stages

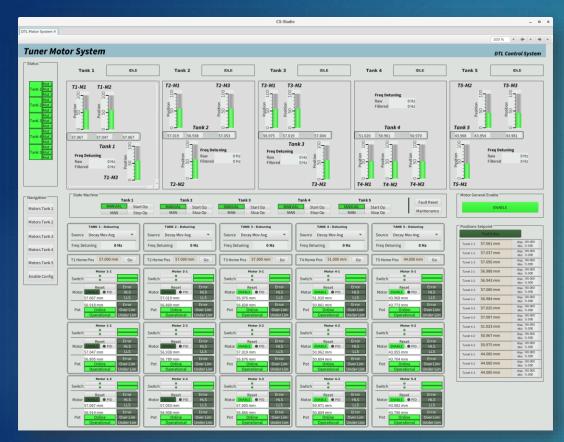

Compared to the RFQ commissioning, this activity required more time and effort

- First FAT in January 2020 @LNL
- Second FAT in May 2021 @ESS
- First SAT (SAT1) between January and March 2022
- First SIT (SIT1) in March 2022
- Last SAT (SAT3) in March 2024
- Last SIT is ongoing

Tests included:

- HW functionality (cabling, labelling, etc.)
- EPICS and PLC SW functionality (for SAT)
- Integration in the production environment
- HW and SW interfaces with other LCS and ESS CS Services (archiver, alarms, version repo, etc.)
- Documentation (manuals, verification reports) —> Big impact

ESS DTL LCS HMI


DTL Main Panel:

Contains the main parameters provided by the functional systems used by the DTL

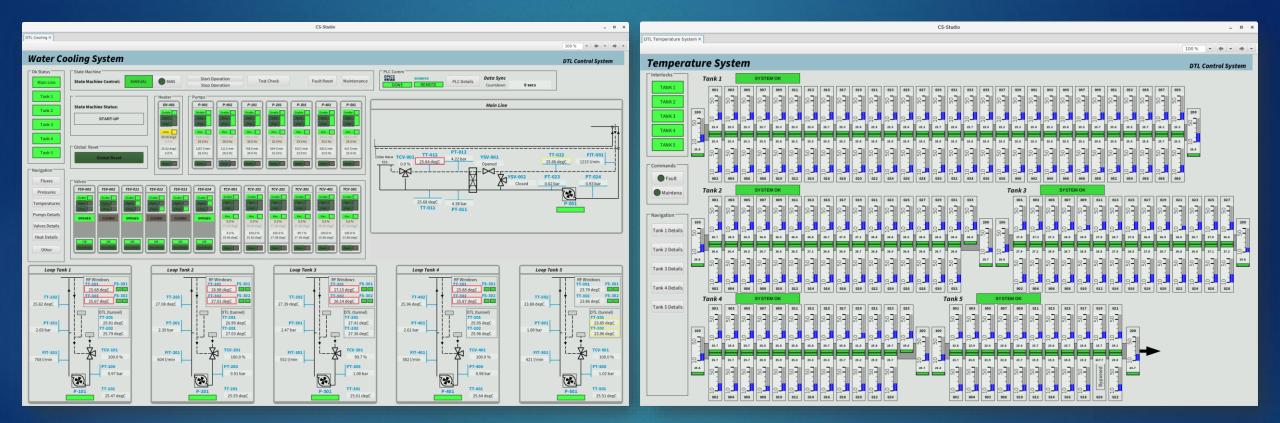
- Temperature
- Tuners
- Steerers
- Cooling (SKID)
- Vacuum
- ► RF

It also provides the interface to the high-level orchestration

ESS DTL LCS HMI

Tuners control panel

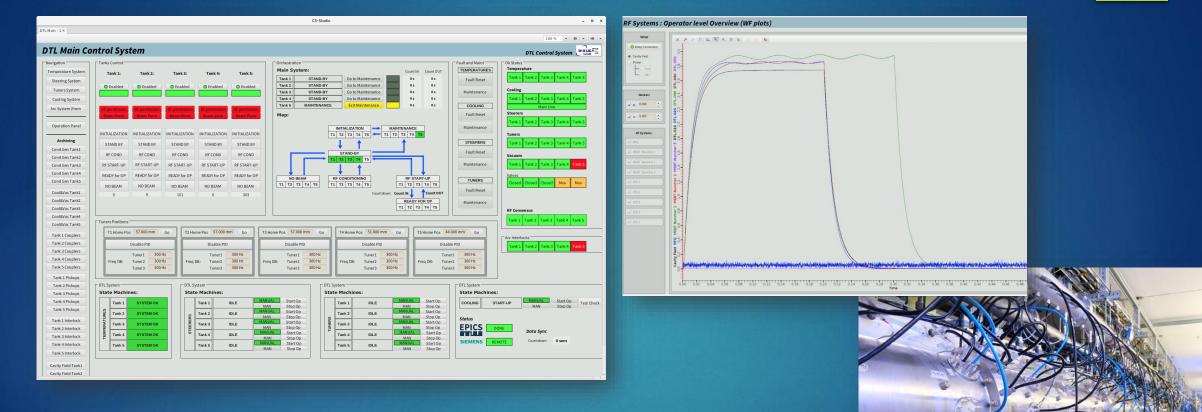
				CS-Studio					_ 0
Steering System ×								10	00% + (* * *
								10	0% • • • •
eering S	ystem							1	DTL Control Systen
Status	Tank 1		Tank 2	Tank 3	Tank 4	Tank 5	Impedence	Steerers Controls	PS Force Off
Tank 1	State	IDLE	IDLE	IDLE	IDLE	IDLE	Fault Threshold:	Slide/Text Imput	Slider
Fank 2 Fank 3	Machines						5.00 ohm	Zero Current	Zero Current
ank 4	TS Status VHVHVH						5.00 0111	T1DT#5-V	
nk 5	State Machine							Т10Т#7-Н	0
			nk 2 Tank		Tank 4	Tank 5	Fault Reset	10	Q
is 1	MANUAL	Start Op MANUAL Stop Op MAN	Start Op MANUAL Stop Op MAN	Start Op MANUAI Stop Op MAN	Start Op Stop Op	MANUAL Start Op MAN Stop Op	Maintenance	10	
51	Tank 1							T1DT#21-V	
ais 2								T1DT#23-H	
	DT#5-V DT#7-		H DT#21-V DT#23-H	DT#27-V DT#:	29-H DT#43-V	DT#45-H DT#49-V Line On Line On	DT#51-H	10	
iis 3	PS On PS On		PS On PS On	PS On PS On		PS On PS On	PS On	10	Q
	Ok State Ok Stat			Ok State Ok St		Ok State Ok State	Ok State	Т107845-Н	<u> </u>
s 4	-0.00005 A 0.0000		OK OK 0.00001 A -0.00004 A	-0.00001 A 0.000		OK OK -0.00000 A -0.00001 A	OK -0.00001 A	T1DT#49-V	0
is 5	0.00214 V -0.0008 0.00000 ohm 0.00000 c	83 V -0.00141 V 0.00042 V	0.00879 V -0.00170 V	-0.00061 V -0.000	031 V -0.00173 V	0.00014 V -0.02477 V 0.00000 ohm 0.00000 ohm	0.00093 V 0.00000 ohm	T1DT#51-H	<u> </u>
	Reset Reset		Reset Reset	Reset Res		Reset Reset	Reset	T2 DT#5-V	0
tatus —	- Tenh 3			- Tank 2				10	
1-2	Tank 2			Tank 3				1201017-0	Q
3-5	DT#5-V DT#7-		H DT#29-V DT#31-H	DT#6		DT#20-V DT22-H		T2DT#19-H	
n	PS On PS On		PS On PS On	Line On PS On		PS On PS On		T2 DT#29-V	
n	Ok State Ok Stat	ate Ok State Ok State	Ok State Ok State	OkSta	ate Ok State	Ok State Ok State		T3DT#31-H	- <u>A</u> -
Details	-0.00003 A 0.00003		OK OK A 0.00001 A 0.00003 A	-0.0000		-0.00001 A 0.00003 A		10	<u> </u>
	-0.00020 V 0.00068	8V 0.00081V -0.00030V	V -0.00033 V -0.00017 V	-0.0006	61 V 0.00076 V	-0.00023 V -0.00125 V		T3 DT#20-V	<u> </u>
Details	0.00000 ohm 0.00000 o Reset Reset		m 0.00000 ohm 0.00000 ohm Reset Reset	0.00000 Rese		0.00000 ohm 0.00000 ohm Reset Reset		ТЗ РТ#22-Н	
Details								T4DTH-V	0
Detans	Tank 4		Tank 5					T4DT#6-H	Q
Details	DT#4-V DT#6-			DT#5-H DT#15-				T4DT#16-V	<u> </u>
	Line On Line On PS On PS On		Line On PS On	Line On Line On SOn SON				10	Q
5 Details	Ok State Ok Stat			Ok State Ok State	te Ok State			10	
	OK OK 0.00004 A -0.0000		A 0.00002 A	OK OK				10	
	-0.00072 V 0.00032 0.00000 ohm 0.00000 o	2 V 0.00028 V 0.00128 V	/ 0.00011 V	-0.00011 V 0.00045 0.00000 ohm 0.00000 ol	V 0.00031 V			TS DT#15-V	- <u>^</u> -
	0.00000 ohm 0.00000 c Reset Reset		m 0.00000 ohm Reset	Reset Reset				15 DT#17-M	E o E


Steering control panel

Maurizio Montis , <u>Mauro Giacchini</u>

EPICS Summer School – 06th August 2024

ESS DTL LCS HMI


55

Cooling control panel

Temperatures control panel

ESS DTL LCS in Action

DTL Conditioning: Tank1 started in 2022 Tanks 2,3,4 in 2023

Maurizio Montis, Mauro Giacchini

Adventures of an EPICS Developer

EPICS Summer School – 06th August 2024

Lessons Learned

- Long R&D and software architecture had an enormous (good) impact in maintenance and device extension
 - New magnetic devices can be integrated in the beam transport system in term of days
 - End users can not distinguish between different devices
 - ▶ same GUI \rightarrow easier learning curve for operators
 - ► GUIs designed and developed with operators → "happy wife, happy life" rule

Maintenance HW and SW

- ▶ HW: industrial PCs required several maintenances during preparation times
- ► HW & SW: removed internal EPICS IOCs in Caenels models → optimized code structure
- SW: virtualization has decreased downtimes and preparation times
- SW: great feedback from EPICS Community for code debug and driver exchange
 → big impact during development

Usage of opensouce solutions

- Good impact in terms of €€ and important support from communities (....considering consolidated communities)
- Possibility to customize service / application
- Requires dedicated skills and knowledge to proper configure and maintain systems
- Dedicated teams are desirable, but difficult to achieve

The Choice of the right hardware

- \blacktriangleright New Caenels devices with Eth \rightarrow introduced virtualization for beam transport system
- ▶ From industrial PCs to Virtual Machines → minimized bottleneck in the HW maintenance

The Function of Power Test

- Possibility to validate control system architectures and technologies involved
- Possibility to change (in time) solutions if required

The Importance of Documentation

- Keep track of the activity is a time-consuming activity
 - create and manage documentation could be required to be done in parallel with CS development and implementation
 - Don't underestimate the time required.... Overestimate it!
- In a project, different documentations are required at different stages and for different scopes
 - Each kind of document requires different tools and services (i.e., wiki, git, etc.)
- It is possible that documentation is connected to project's milestones and payments

Adopting EPICS as Control System Framework

- The EPICS architecture can be designed and implemented choosing only the tools and applications really required
- Fantastic framework to define a distributed control system where there is the need of integrate different HW and SW solutions
- Define a real distributed control system (sort of shared memory)
- It is open source and supported by a real active community

Working with EPICS

- Require a good control architecture design in order to implement the best solution according to the project requirements
- Size of the control system
- Number of functional sub-systems involved and their sizes
- Additional network services needed
- Do not sub-estimate the network!

The Naming Convention is a critical point: understand your requirements and compare solutions from different laboratories

A bad naming convention can have dramatic consequences in terms of maintenance, control system architecture and downtimes

Thank You for Your Attention