

Machine Learning-Assisted Design of Cesium-Based Photocathodes from First Principles

Holger-Dietrich Saßnick¹ and Caterina Cocchi^{1,2}

¹Carl von Ossietzky Universität Oldenburg, Physics Department, 26129 Oldenburg ²Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, 12489 Berlin

 18^{th} September, 2024

Ab initio methods like density functional theory (DFT) allow the calculation of material's properties without empirical parameters.

$\mathop{H}_{\substack{\mathrm{Hydrogen}\\1.008}}^{1}$																	2 He Hollium 4.003
³ Lithium 5.940	$\mathop{Beryllium}\limits_{9.012}^{4}$											5 B Boron 10.810	6 C Carbon 12.011	7 N Nitrogen 14.007	8 O Oxygen 15.999	9 F Fluorine 18.998	10 Ne 20,180
11 Na 22.990	$\mathop{Magnostum}\limits_{24.305}^{12}$											13 Aluminium 26.982	14 Si 28.085	15 P Phosphorus 30.974	16 S Sulfur 32.050	Chlorine	18 Ar 39.948
I9 K Potassium 39.098	$\overset{^{20}}{\underset{^{Calcium}}{\overset{^{Calcium}}{\overset{^{Calcium}}{\overset{^{20}}}}{\overset{^{20}}{\overset{1}}{\overset{^{20}}}{\overset{^{20}}}}{\overset{^{20}}{\overset{1}}{\overset{^{20}}}}}}}}}}}}}}}}}$	21 Scandium 44.956	22 Ti ^{Titanium} 47.867	22 V Vanadium 47.867	24 Cr Cromium 51.996	25 Mn Manganese 54.938	26 Fe Iron 55.845	27 Co Cobalt 58.933	28 Ni 58.603	29 Cu Copper 63.546	30 Zn 55-380	$\overset{\scriptstyle 31}{\underset{\scriptstyle Gallium}{Gallium}}$	32 Germanium 72.630	33 As Armenic 74.922	34 See Selenium 78.971	35 Br Bromine 70.904	36 Kr Krypton 83.798
B5.468	38 Sr Strontium 87.620	³⁹ Yttrium 88.906	⁴⁰ Zr ^{2irconium} _{91.224}	40 Nb Niobium 91.224	Molybdenum 95.950	$\mathop{\mathbf{Tc}}_{{}^{\mathrm{Technetium}}_{(98)}}^{43}$	Rutherium	45 Rh Rhodium 102.910	$\mathop{Palladium}\limits_{106,420}^{46}$	47 Ag Silver 107.870	48 Cd Cadmium 112.410	49 In Indiam 114.820	50 Sn 118.710	51 Sb Antimony 121.760	52 Te Tellurium 127.600	53 I 126.900	54 Xe Xenon 151.290
55 Cs 132.910	56 Ba Barium 137.330		72 Hf Hafnium 178-490	72 Ta Tantalum 178.49	74 W Tungsten 183.840	$\mathop{\mathbf{Re}}\limits_{{}^{\operatorname{Rhenium}}_{186,210}}$	76 Os Osmium 190.230	77 Ir 171/101 192.220	Platinum 195.080	79 Au Gold 196.970	B0 Hg Mercury 200.590	TI Thallium 204.38	$\mathop{Pb}\limits_{\scriptstyle{\rm Lead}\\\scriptstyle{207,200}}$	Bismuth 208.980	$\mathop{Polonium}\limits_{(209)}^{84}$	*5 At (210)	86 Rn Radon (222)
Francium (223)	88 Radium (226)		Rutherford. (267)	Dubnium (268)	105 Seaborgium (269)	107 Bh Bohrium (270)	$\mathop{Hassium}\limits_{(277)}^{108}$										

$\overset{^{57}}{\underset{^{\text{Lantharium}}{}_{138.91}}}$	58 Ce 140.12	59 Pr Praseod. 140.91	Neodymium 144.24	$\Pr_{(141)}^{61}$	$\mathop{Samarium}\limits_{150.36}^{62}$	63 Eu Europium 151.96	$\mathop{Gadolinium}\limits_{157.25}^{64}$	$\mathop{Tb}\limits_{\scriptscriptstyle{\rm Terbium}\atop\scriptscriptstyle{158.93}}$	$\overset{66}{\underset{162.50}{\overset{66}{}}}$	67 Ho Holmium 164.93	68 Er 167.26	69 Tm Thalium 168.93	$\mathop{Yb}\limits_{{}^{\text{Ytterblum}}_{173.05}}$	$\underset{\scriptstyle174.97}{\overset{71}{\text{Lu}}}$
$\mathop{\mathbf{Actinium}}\limits_{\scriptscriptstyle{(227)}}^{\scriptscriptstyle{89}}$	⁹⁰ Th ^{Thorium} 232.04	Protactinium 231.04	$\mathop{U}_{_{_{_{_{238.03}}}}}^{_{_{92}}}$	${\mathop{\rm Neptunium}\limits_{^{(237)}}}^{93}$	Plutonium (244)	Americium (243)	$\mathop{Cm}\limits_{(247)}^{96}$	$\mathop{Berkelium}\limits_{(247)}^{97}$	Californium (251)	Einstenium (252)	$\mathop{Fm}\limits_{^{\rm Fermium}}_{^{(257)}}$	$\mathop{\mathrm{Mendelevium}}\limits_{\scriptscriptstyle{(258)}}^{\scriptscriptstyle{101}}$	$\underset{(259)}{\overset{102}{\text{No}}}$	Lawrencium

<u>233</u>

2021, 12(9), 1002; doi: 10.3390/mi12091002

 $\varepsilon \Sigma t$

					$\mathop{He}\limits_{\substack{\mathrm{Hellium}\\4.003}}^{2}$
3 600 810	6 C Carbon 12.011	7 N Nitrogen 14.007	8 O Oxygen 15.999	9 F Fluorine 18.998	10 Ne 20,180
1 inium 982	14 Sillicon 28.085	Phosphorus 30.974	16 Sulfur 32.060	Chlorine 35.450	18 Ar Argon 39.948
a 1111m 723	32 Germanium 72.630	33 As Arsenic 74.922	34 See 78.971	35 Br Bromine 70.904	³⁶ Kr ^{Krypton} ^{83,798}
n 1411 1820	50 Sn ^{Tis} 118.710	51 Sb Antimony 121.760	52 Te Tellurium 127.600	53 I Iodine 126.900	54 Xe Xenon 131.290
21 11um 1.38	82 Pb Lead 207.200	83 Bi Bismuth 208.980	Polonium (209)	Astatine (210)	Radon (222)

[0 1100 1.93	68 Er Erbium 167.26	69 Tm ^{Thulium} 168.93	$\mathop{\mathbf{Yb}}_{^{\mathrm{Ytterbium}}_{173.05}}^{^{70}}$	$\mathop{\rm Lu}_{\scriptstyle \rm Lutetium}_{\scriptstyle 174.97}$
S S S2)	$\mathop{Fermium}\limits_{(257)}^{100}$	Mendelevium (258)	$\overset{^{102}}{\underset{(259)}{^{Nobelium}}}$	Lawrencium

2/18

Ab initio methods like density functional theory (DFT) allow the calculation of

material's properties without empirical parameters.

× 20'

<u>85</u>t

Structural information about the material is a required input.

εΣτ

Structural information about the material is a required input.

Categories of Crystal Structure Prediction Methods

Methods with fixed stoichiometry:

Minima hopping.

Goedecker, Modern Methods of Crystal Structure Prediction 2010, John Wiley & Sons, Ltd. Chap. 6, 131–145; doi: 10.1002/9783527632831.ch6

Bayesian optimization.

Yamashita et al., Phys. Rev. Mater. 2018, 2(1), 013803; doi: 10.1103/PhysRevMaterials.2.013803

Methods without stoichiometry constraints:

Random structure search.

Harper et al. Johnson Matthey Technology Review 2020, 64.2, 103-118; doi: 10.1595/205651320X15742491027978

Genetic algorithms.

Lyakhov et al. Modern Methods of Crystal Structure Prediction 2010, John Wiley & Sons, Ltd. Chap. 7, 147–180; doi: 10.1002/9783527632831.ch7

Categories of Crystal Structure Prediction Methods

Methods with fixed stoichiometry:

Minima hopping.

Goedecker, Modern Methods of Crystal Structure Prediction 2010, John Wiley & Sons, Ltd. Chap. 6, 131–145; doi: 10.1002/9783527632831.ch6

Bayesian optimization.

Yamashita et al., Phys. Rev. Mater. 2018, 2(1), 013803; doi: 10.1103/PhysRevMaterials.2.013803

Methods without stoichiometry constraints:

Random structure search.

Harper et al. Johnson Matthey Technology Review 2020, 64.2, 103-118; doi: 10.1595/205651320X15742491027978

Genetic algorithms.

Lyakhov et al. *Modern Methods of Crystal Structure Prediction* 2010, John Wiley & Sons, Ltd. Chap. 7, 147–180; doi: 10.1002/9783527632831.ch7

All methods share large computational costs and/or are inflexible in its application.

Categories of Crystal Structure Prediction Methods

Methods with fixed stoichiometry:

Minima hopping.

Goedecker, Modern Methods of Crystal Structure Prediction 2010, John Wiley & Sons, Ltd. Chap. 6, 131–145; doi: 10.1002/9783527632831.ch6

Bayesian optimization.

Yamashita et al., Phys. Rev. Mater. 2018, 2(1), 013803; doi: 10.1103/PhysRevMaterials.2.013803

Methods without stoichiometry constraints:

Random structure search.

Harper et al. Johnson Matthey Technology Review 2020, 64.2, 103-118; doi: 10.1595/205651320X15742491027978

Genetic algorithms.

Lyakhov et al. *Modern Methods of Crystal Structure Prediction* 2010, John Wiley & Sons, Ltd. Chap. 7, 147–180; doi: 10.1002/9783527632831.ch7

This approach combines random structure search with machine learning to alleviate these issues.

https://aim2dat.github.io/aim2dat/

The Initial High-Throughput Data Set

- ▶ 1073 crystal structures successfully converged.
- ► Formation energy:

 $E_{\rm form}(\mathrm{Cs}_x\mathrm{Te}_{1-x}) = E(\mathrm{Cs}_x\mathrm{Te}_{1-x}) - [xE(\mathrm{Cs}) + (1-x)E(\mathrm{Te})]$

The stability (ΔE_{hull}) of each crystal is given by the distance to the convex hull.
Average stability: 0.212 eV/atom.

Stability distribution:

Carl von Ossietzky Universität Oldenburg

Data Mining of Cs-Te Bulk Crystals

Materials project (MP) Jain, Ong, et al., APL Materials 2013, 1, 011002; doi: 10.1063/1.4812323

Den quantum materials database (oqmd) Saal, Kirklin, *et al., JOM* 2013, 65, 1501–1509; doi: 10.1007/s11837-013-0755-4

- Mined from online databases and enriched by substituting chemically similar elements.
- Distribution of the queried crystal structures:

Saßnick and Cocchi, J. Chem. Phys. 2022, 156, 104108; doi: 10.1063/5.0082710

Distribution and Characteristics

Formation energy:

 $E_{\rm form}(\mathrm{Cs}_x\mathrm{Te}_{1-x}) = E(\mathrm{Cs}_x\mathrm{Te}_{1-x}) - [xE(\mathrm{Cs}) + (1-x)E(\mathrm{Te})]$

- The stability (ΔE_{hull}) of each crystal is given by the distance to the convex hull.
- Average stability: 0.136 eV/atom.
- The electronic band gap correlates with the composition for stable compounds (ΔE_{hull} < 0.05 eV/atom).</p>

Saßnick and Cocchi, J. Chem. Phys. 2022, 156, 104108; doi: 10.1063/5.0082710

12/18

Machine Learning Structure-Property Relationships

Carl von Ossietzky Universität

Trained model

Machine Learning Structure-Property Relationships

Carl von Ossietzky Universität

εΣτ

- Coord.: Statistical quantities of the coordination environment of each atomic site and composition.
 - ► ET: Extremely randomized trees
 - ► KRR: Kernel-ridge regression

- Coord.: Statistical quantities of the coordination environment of each atomic site and composition.
 - ET: Extremely randomized trees
 - ► KRR: Kernel-ridge regression
- ► *F-Fprint:* Averaged radial distribution function for each element-pair.
 - ► *KRR:* Kernel-ridge regression

- Coord.: Statistical quantities of the coordination environment of each atomic site and composition.
 - ► *ET:* Extremely randomized trees
 - ► KRR: Kernel-ridge regression
- ► *F-Fprint:* Averaged radial distribution function for each element-pair.
 - ► *KRR:* Kernel-ridge regression
- SOAP: Power-spectrum of the overlap matrix of a set of atom-centered Gaussian functions.
 - ► *KRR:* Kernel-ridge regression

- Coord.: Statistical quantities of the coordination environment of each atomic site and composition.
 - ► *ET:* Extremely randomized trees
 - ► KRR: Kernel-ridge regression
- ► *F-Fprint:* Averaged radial distribution function for each element-pair.
 - ► *KRR:* Kernel-ridge regression
- SOAP: Power-spectrum of the overlap matrix of a set of atom-centered Gaussian functions.
 - ► KRR: Kernel-ridge regression
- M3GNet: Graph representation with atomic sites as nodes and chemical bonds as edges.
 - Graph neural network

15 / 18

Universität Oldenburg

Carl von Ossietzky

Universität Oldenburg

<u>εΣ</u>t

<u>εΣt</u>

Initial pool	0.212	0.177	_	65.8	0.0/2.1/1.3
Coord. ET	0.178	0.109	0.081	90.0	0.0/6.0/5.0
Coord. KRR	0.164	0.098	0.101	80.0	0.0/5.0/5.0
F-Fprint KRR	0.378	0.308	0.344	34.0	0.0/0.0/0.0
SOAP KRR	0.158	0.124	0.157	63.0	0.0/0.0/3.0
M3GNet TF	0.195	0.106	0.110	90.0	1.0/5.0/1.0
M3GNet base	0.193	0.126	0.156	77.0	0.0/4.0/3.0

<u>εΣt</u>

<u>εΣ</u>τ

εst

Conclusions

- The presented approach offers a straight-forward method to explore unknown materials
 - The pre-selection step greatly improves over a random structure search.
 - ▶ The *Coord. ET* and the *M3GNet* models show the best performance.
- ▶ The implementation can be readily applied to any other material-system, e.g. ternary antimonides.
- The source code is published and freely available (https://aim2dat.github.io/aim2dat/).

Experimental Collaborators

Prof. Dr. Thorsten Kamps. and team

Sponsors

Bundesministerium für Bildung and Forschung

Niedersächsisches Ministerium für Wissenschaft und Kultu

Project-id: nic00069. nic00076