

Boosting Photocathode Performance through Plasmonic Effects and In-situ Rejuvenation Techniques

E. Granados, M. M. Calderon, B. Groussin, P. Katona, L. Jones, E. Chevallay, R. E. Rossel

EWPAA 2024, 17th September 2024

... and many others

Outline

Our team at CERN

Introduction, key areas of expertise

Electron sources at CERN

- CLEAR electron source
 - Photoinjector
 - Photocathode rejuvenation
 - New Electro-optic 12 GHz rep rate photoinjector laser
- AWAKE electron source(s)
 - Overview
 - Photocathode production, transport in the

Photoemission laboratory

- Plasmonic photocathode research
- Interest in nanophotonics: electron production / manipulation, diagnostics / sensors, novel accelerators

Conclusions

Lasers and photocathodes team at CERN

"The Lasers & Photocathodes section is responsible for *laser installations and optical beamlines used* to produce charged particle beams in the CERN accelerators complex and research facilities"

<u>Current members:</u> Katerina Chrysalidis – STAFF Eduardo Granados – STAFF Ralf Rossel – STAFF

Isabelle Fontaine – TEMC Anahita Omoumi– FELL Cyril Bernerd – FELL A. Ajayakumar – GRAP J. Reilly – GRAP

Ralitsa Mancheva – DOCT Eva Roikova – DOCT J. Wessolek – DOCT A. Jaradat – DOCT Palma Katona – TECH M. Fenech – TNRE A. Aggarwal – TECH

Former members: Bruce Marsh Valentin Fedosseev **Eric Chevallay** Shane Wilkins Camilo Granados Matthieu Veinhard Christoph Seifert Tom Day Goodcare Sebastian Rothe Daniel Fink Harsha Panuganti Anna-Maria Bachmann **Florence Friebel** Daniel Talan Echarri **Reinhard Heinke**

Christoph Hessler Mikhail Martyanov Piotr Gach Irene Martini Marta Csatari Divall Massimo Petrarca Nathalie Lebas Vaila Leask Vadim Gadelshin Miguel Martinez-Calderon Baptiste Groussin

CLIC Test Facility heritage

Currently operative electron sources at CERN

Photocathode technology	Cs ₂ Te	Cs_2Te / Cs_3Sb	Cu	Cs ₂ Te Cs ₂ Sb	Cu Mo		
	In-situ	Load-lock	Cu	KCsSb	Plasmonic		
Quantum efficiency	1-5%	5-20%	0.01%	1-20%	0.01-0.2%		
Charge production	7 nC/bunch 150 bunches	1 nC Single bunch	400 pC Single bunch	10s nC Single bunch			
Laser driver	Nd:YLF 1 uJ, 4.8 ps	Ti:Sapphire Yb:KGW (Pharos) 0.2 uJ, 1.2 ps 400 uJ , 200 fs		Ti:SapphireYb:KGW (Pharos)0.2 uJ, 1.2 ps 400 uJ , 200 fs		Nd:YAG 7 mJ, 8 ns	
Use	User beamtimes CLEAR	Witness, SM AWAKE run 1-2b	Witness, AWAKE run 2c	AWAKE production			

CLEAR user facility electron beamlines

CLEAR photoinjector laser system

Cleo

Laser systems at CLEAR

Example: operation during 2023

	March	April	Мау	June	July	August	September	October	November	December
Beamtimes	JUAS	LUXE beam profiler detector (INFN Bologna)	CHUV – FLASH	Cherenkov BPMs (INFN Bologna)	LHC dielectric Cherenkov detectors	Plasma lens (University of Oslo)	VHEE scatterers dosimetry	Emittance measurements (Liverpool)	Broadband pickups (PSI)	Real-time VHEE dosimetry
	Neutron monitors (Politecnico di Milano, PSI, ELI)	Passive dosimetry	FCC Bunch length monitor	EO sampling	FCC-ee Bunch profile monitor (KIT)	VHEE scatterers dosimetry (Oxford)	AWAKE Cherenkov BPMs (Oxford)	HL-LHC cable ageing research (CARE)	Radiation hardness (IRRAD)	AWAKE spectrometer
	Real-time dosimetry (Oxford)	Beam scatterers (Oxford)	VHEE UHDR (University of Victoria)	Quartz fiber detectors	Real time beam dose monitors (Oxford)		CHUV Chemistry	VHEE passive dosimetry	CHUV - FLASH	
	Beam scatterers	Bergoz wall current monitor	Cherenkov BPMs (Oxford)	CLEAR MD			Real-time dosimetry (Strathclyde)	FCC Cherenkov BPMs + BLM	Real-time VHEE dosimetry	
	LUXE beam profiler detector (INFN Bologna)	Plasmid irradiations (Manchester)	CLEAR MD				Beam loss monitors in silica fibers (Liverpool)	Broadband pickups (PSI)	3D Si, diamond sensors (University of Kansas)	
		CHUV FLASH					Cavity BPMs (Royal Holloway)			
Photoinjector Issues	No issues	6 h down due to laser chiller	Laser amplifier failure 6 hours	Laser synchronization downtime ~6 h	No issues. Laser maintenance performed	Laser oscillator refurbished during summer downtime	Laser amplifier failure 2h. Power cut 2h	Temperature fluctuations, 2h downtime	Laser synchronization issues: 3h downtime	Amplifier power supply failed, although 80h+/week !
uptime	100%	98%	98%	98%	100%	100%	98.7%	99%	99%	100%

35 beam-times in 2023 (mostly external users), typically 70 h/week

Laser up-time total ~6500 h, down-time ~27 h (up 99.6%). Laser available 24/7 usually

New front-end laser based on programmable Electro-Optic (EO) comb currently under construction

CLEAR photocathode rejuvenation

M. Martinez-Calderon, E. Chevallay, R. E. Rossel, L. B. Jones, G. Zevi Della Porta, B. Marsh, and E. Granados Phys. Rev. Accel. Beams 27, 023401 (2024)

Homogeneity of rejuvenated cathodes

E. Granados | EWPAA 2024 | 17.09.24

M. Martinez-Calderon, E. Chevallay, R. E. Rossel, L. B. Jones, G. Zevi Della Porta, B. Marsh, and E. Granados Phys. Rev. Accel. Beams 27, 023401 (2024)

New CLEAR photoinjector laser

Operating at arbitrary rep. rate MHz up to 12 GHz, programmable pulse duration

Programmable trains with arbitrary amplitude and beam profile, FCC-ee "top up scheme"

Phase-stability enabling ultra-high intensity laserelectron interaction

7

Electro-optic frequency comb laser system

Gigapico Burst Mode:

Wavelength (Yb): Average power: Maximum burst energy: Maximum pulse energy: Pulse repetition rate : Burst repetition rate: Pulse duration: Number of pulses per burst:

1030 nm
40 W
1 mJ
10 μJ
0.25 GHz to 18 GHz
50 kHz to several MHz
800 fs to 2 ps
10 to several 1000

Electro-optic frequency comb development status

Prototype under construction in Photoemission lab

90% of required items already procured

Many recycled items from CLIC:

- CLIC burst amplifier,
- CLEAR booster amplifier,
- CLIC harmonic conversion stages,
- Amplitude modulators and fiber systems for phase-coding project.
- Optical elements
- Pulse picker from PHIN

Synergy with developments for Gamma Factory PoP experiment at SPS and Compton polarimeter for FCC-ee.

Fully programmable system: Can also simulate FCC-ee electron bunch structure.

ICS X-ray sources program at CERN

1-12 GHz rep rate Electro-Optic frequency combs

Burst Amplification Chain to >1J/train

Material / Wavelength	Nd:YLF / 1047 nm
Pulse duration / Rep Rate	4 ps / 1.5 GHz
Pump power (burst)	20 kW
Train duration	250 us
# pulses/train	375,000
Train rep rate	5 Hz
Average Power	10 W
Energy/pulse	5 uJ / pulse
Energy/train	2 J / train

Burst-mode Fabry-Perot enhancement cavity

Phys. Rev. Accel. Beams 21, 121601 (2018)

15

Advanced Wakefield Accelerator Experiment (AWAKE)

Accelerated electron

VAKE

Advanced Wakefield Accelerator Experiment (AWAKE)

Proof-of-principle experiment: wakefield plasma acceleration using a proton bunch as a driver, a world-wide first.

It demonstrated acceleration of a low-energy witness bunch of electrons from 15-20 MeV to several GeV over a short distance (~10 m) by creating a high acceleration gradient of several GV/m

Our contribution:

- UV beam generation, delivery, and photocathode, diagnostics.
- IR beam delivery for plasma generation, diagnostics.
- Experimental and laser support

Advanced Wakefield Accelerator Experiment (AWAKE)

AWAKE photocathode production - Photoemission lab

>25 years producing cathodes

Fabrication, lifetime studies, characterization

Past experiences

Class	Material	QE	Wavelength	Gun	Application
Normally conducting metals	Cu, Mg	10 ⁻⁵ - 10 ⁻⁴	UV	NC-RF	Low Rep rate FELs (LCLS, SwissFEL)
Super-conducting metals	Nb, Pb	10 ⁻⁵ - 10 ⁻⁴	UV	SC-RF	High Rep rate FELs
Positive electron affinity semiconductor	Cs ₂ Te, Cs ₃ Sb , K ₂ CsSb …and others…	0.1 – 0.2	Visible – UV	NC-RF, DC	FELs, ERLs
Negative electron affinity semiconductor	GaAs, etc	0.1-0.35	IR – Visible	DC (XHV)	Polarized sources, ERLs (ALICE)

Metals

- Low quantum efficiency -> requires high power lasers -> plasma is formed
- Robust and simple
- Semiconductors
 - High quantum efficiency at extended wavelength range.
 - More difficult to maintain x-rays and ions can cause decomposition and surface damage, vacuum...
 - Cs₂Te is quite standard, but requires UV

CERN Photoemission lab

- Cs_2Te photocathodes (UV, high QE) \rightarrow current workhorse for AWAKE and CLEAR guns.
- Bi-alkali photocathodes (green, high charge) → proposed for CLIC.
- Cu cathodes for single bunch RF guns
- NEW: Plasmonically enhanced metal photocathodes.

Co-deposition process

Co-deposition: Cs and Sb (or Te) evaporated at the same time. The metallic elements can mix together in the vapour phase.

The evaporators power is adjusted in order to reach a maximum value of QE.

> Average pressure during the process is 1e-8 mbar.

Once the cathodes are fabricated, they undergo QE testing spatially, lifetime studies and XPS characterization.

Production process

Lifetime studies

21

H. Panuganti, E. Chevallay, V. Fedosseev, M. Himmerlich, Synthesis, surface chemical analysis, lifetime studies and degradation mechanisms of Cs-K-Sb photocathodes, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 986, 2021

Photocathode transport and characterization (XPS)

Photocathode transport and characterization (XPS)

Re-analyzing 20 years' worth of photocathode growth data

To dig deeper into this analysis, we analyzed the thickness at different "windows" of the stoichiometric deposition ratio

We observe a clear trend when the "window" is narrowed to a range of 1.9 - 2.2. When the percentage of the total thickness at this "window" is higher, the measured QE also increases.

Plasmonic photocathodes - Motivation

"The goal is to investigate such <u>surface-plasmon assisted photoemission</u> with a view on simplifying the photocathode production."

Current technology uses Cs₂Te photocathodes:

- Complex deposition fabrication process. Hard to achieve reliability.
- Requirements for UHV, limits lifetime of cathodes.
- Photocathode exchange process is complicated and slow, impacting operations.

The aim is to be able to use metallic cathodes for some injectors that don't require excessively large QE at CERN, avoiding semiconductors with all their disadvantages.

By-products:

- Overall enhancement of QE for any photocathode technology.
- Possibility of spatially tailoring the emission characteristics of photocathodes via surface morphological features.

"The results of this project will have a positive impact for future projects at CERN (FCC, LHeC, etc) and beyond, such as for FLASH radiation therapy, FEL development and others."

The role of nanoscale photon-electron interactions

Simulation of plasmonic effects in nanostructured metals

E. Granados | EWPAA 2024 | 17.09.24

B. Groussin, et al. "Simulation of Plasmonic Effects in Nanostructured Copper Surfaces for Field-assisted photoemission" *Journal of Physics: Conference Series*, vol. **2687**, no. 032034 (2024)

Hot electron emission from nanospheres

- The work function (W) for most metals is in the DUV wavelength range (200-250 nm)
- Spheres are well suited for moderate field enhancements and electron temperature, preventing LIDT
- Easy to regenerate in-situ.

Nanosphere size distribution for each photocathode

E. Granados | EWPAA 2024 | 17.09.24

M. Martinez-Calderon, et al. "Hot electron enhanced photoemission from laser fabricated plasmonic photocathodes" *Nanophotonics*, vol. **13**, no. 11, pp. 1975-1983 (2024)

Laser fabricated plasmonic photocathodes

Performance of laser-produced plasmonic photocathodes

M. Martinez-Calderon, et al. "Hot electron enhanced photoemission from laser fabricated plasmonic photocathodes" *Nanophotonics*, vol. **13**, no. 11, pp. 1975-1983 (2024)

Performance of laser-produced plasmonic photocathodes

- CEIT's photocathode shows consistent spatial distribution, but only 5x enhancement
- IOM's photocathode: wasn't possible to spatially resolve the checkerboard, but 25x enhancement
- Assessment of surface composition was realized with XPS, pointing at oxidation issues during laser treatment

Laser nanomachining station at CERN

CERN

In general, very heterogeneous results with 257 nm

B. Groussin, et al. "Copper Surface Treatment with deep UV Ultrafast Laser for Improved Photocathode Photoemissive Properties" *Journal of Physics: Conference Series*, vol. **2687**, no. 032032 (2024)

Highly efficient copper oxidation with DUV laser

E. Granados | EWPAA 2024 | 17.09.24

Highly efficient copper oxidation with DUV laser

E. Granados | EWPAA 2024 | 17.09.24

B. Groussin, et al. "Efficient Composite Colorization of Copper by Spatially Controlled Oxidation with Deep-UV Ultrafast Lasers" *Advanced Optical Materials*, vol. **12**, no. 2302071 (2024)

Highly efficient copper oxidation with DUV laser

Thin oxide film reflectivity

$$U_r\left(\lambda
ight)=r_1+rac{t_1t_1'r_2'\mathrm{e}^{i\phi}}{1-r_1'r_2'\mathrm{e}^{i\phi}}$$

$$\phi = 4\pi
u rac{n_{0}\left(\lambda
ight)h}{c}\cos\left(heta
ight)$$

r, t are complex in general

- Centroid of reflected spectrum perdiocally shifts with oxide thickness
- Absorption eventually makes the spectrum converge to typical green oxide.
- Weighiting in the human eye response a similar trend is observed, consistent with experiments.

Machining of copper with nm resolution

- Good prospects for nanomachining of copper with 10s of nm accuracy
- Oxygen content depends mostly on integrated dose D, whereas machining depth is more correlated to laser fluence.
- Possibility of 'erasing' colors by rastering laser at high speed over the surface.

Silicon free-electron light sources

E. Granados | EWPAA 2024 | 17.09.24

E. Granados. *et al.* "Highly Uniform Silicon Nanopatterning with deep-ultraviolet femtosecond pulses", *Nanophotonics* (2024) https://doi.org/10.1515/nanoph-2024-0240

E. Granados. *et al.* "Highly Uniform Silicon Nanopatterning with deep-ultraviolet femtosecond pulses", *Nanophotonics* (2024) https://doi.org/10.1515/nanoph-2024-0240

E. Granados | EWPAA 2024 | 17.09.24

E. Granados. *et al.* "Highly Uniform Silicon Nanopatterning with deep-ultraviolet femtosecond pulses", *Nanophotonics* (2024) https://doi.org/10.1515/nanoph-2024-0240

Conclusions

The direct laser fabrication of nanostructures over a range of materials opens new avenues to <u>produce, accelerate and measure</u> charged particle beams at the CERN accelerator complex

Photoemission enhancement via hot electron production in laser-produced nanostructures

- Nanospheres:
 - Enhancement up to 25x
 - Hard to control size and distribution
- LIPSS
 - · No enhancement observed in the experiments
- Reducing the nanostructure periodicity and features using DUV femtosecond pulses:
 - Highly heterogeneous nanostructure synthesis
 - Efficient photo-oxidation: Not good for accelerators, but great for coloring metals

Free-electron light sources based on silicon nanophotonics

- Record aspect ratio, 100 nm height for periodicity of 250 nm
- Silicon crystalline structure is maintain through the synthesis process
- Applications beyond accelerators include high efficiency photovoltaics, detectors, sensors.

home.cern

Electro-optic frequency comb development status

Electro-optic frequency comb development status

