

Li Xudong Shanghai Advanced Research Institute, CAS

European Workshop on Photocathodes for Accelerator Applications (EWPAA 2024) Dresden, Germany, 17-19 September 2024

Outline

- Background
- Photocathode systems
- Photocathode preparation
- Photocathode tests
- Summary

Background

• SHINE: Shanghai HIgh repetitioN rate XFEL and Extreme light facility

- Linac: 1 MeV electron source, 8 GeV CW SRF linac
- **Undulator:** FEL I/II/III (0.4-25 keV)
- End station: 10
- **Cryogenic plant:** 4kW*3@2K

3

Background

SHINE injector layout

Background

Ideal photocathode:

- High QE (>1%)
- Long lifetime (~months)
- Short response time (sub ps)
- Low thermal emittance ($<1\mu$ m/mm)
- Low dark current

Current SHINE cathode

• Cs_2Te

	GaAs-Cs/O	K ₂ CsSb	Cs ₂ Te
Wavelength	Green (532nm)	Green (532nm)	UV (266nm)
Fresh QE	>10%	>5%	>10%
Gun type	DC,SRF	DC,NCRF,SRF,DC -SRF	NCRF(VHF),S RF, DC-SRF
Vacuum requirement	~10 ⁻⁹ Pa	~10 ⁻⁸ Pa	~10 ⁻⁷ Pa
Response time	~10ps	~lps	~1ps
Operational lifetime	hours~days	days~weeks	weeks~months
Laboratory	Jlab, Cornell University, KEK, BNL	BNL, LBNL(APEX), Jlab, Cornell University	INFN-LASA, DESY, SLAC, FNAL, CERN, ANL, KEK

Photocathode systems

Photocathode preparation system

Photocathode load lock system

Photocathode preparation system

Mo substrate(INFN type)

Cs or Te evaporation source

Photocathode preparation system

Some features of the photocathode preparation system

- The distance between source and substrate is adjustable (2-10cm)
- The deposition thickness and rate of evaporation source can be measured in real time.
- The substrate can be heated and cooled quickly.
- Both positive and negative voltage collect electrons.
- Sequential deposition and co-evaporation of two elements

Te, Cs sequential deposition

Te intermittent, Cs continuous deposition

- Chemical cleaning
- Vacuum heat cleaning

• Te,Cs degas

Substrate treatment

Te intermittment,Cs

continuous

deposition

- 1nm Te deposition(@100°C)
- Cs deposition until the first maximum QE (@100°C, 10µW 265nm)
- Te intermittent, Cs continuous deposition until the final maximum QE

QE>6% @ 265nm

10

0

0

20

15

Time (h)

25

Te intermittent, Cs continuous deposition

Acta Phys. Sin. Vol. 71, No. 17 (2022) 178501

QE of three typical Cs-Te photocathodes

		Substrate	Preparation method	QE@ Preparation chamber	QE@ Suitcase
SHINE	1	Мо	Te, Cs Sequential	8%@255nm	11%@255nm
	2	Мо	Te Intermittent, Cs continuous	10.5%@255nm	15%@255nm
	3	Cu	Te Intermittent. Cs continuous	5%@255nm	7%@255nm

Photocathode transport

Photocathode preparation system

Photocathode suitcase (Ultra high vacuum, 1km)

Photocathode loading system

Photocathode VHF electron gun

Cathode lab

Suitcase unload

~1 km distance

Cathode load lock @Injector tunnel 15

Photocathode emission in SHINE gun

Photoelectron beam commissioning started on 2023.12.01

• 2023.12.03, 1st photoelectron beam of 200 pC @10 Hz

SHINE First beam @control room

200 pC beam faraday cup signal

Photocathode measurement at SHINE gun

Photoathode emission curve, QE and thermal emittance

• ~20 ps FWHM, 0.25 mm rms (Gaussian laser)

Photocathode measurement at SHINE gun

- The QE map of the Cs-Te photocathode
- The Cs-Te photocathode can operate for a long lifetime in the SHINE VHF electron gun at 50pC and 100pC

Summary

- The design, assembly, and debugging of the photocathode system was finished.
- Two Cs-Te recipes were developed, and the QE is typically >5%@265nm.
- 1 MHz beam was generated at the SHINE gun.
- Future plans
 - Further optimize the cathode recipe based on the gun operation results (thermal emittance, lifetime, dark current, QE uniformity...).
 - Explore other high QE photocathodes (UV and green photocathodes).
 - Study on the prepared photocathode properties.

Thank you for your attention!!!