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What is ML?
ML model represents a statistically motivated heuristic for given task
Task domain is defined by given training data

Anything not represented in the data is not part if model’s world.
⇒ Heuristic behavior defined by data, not code
⇒ Different/less bias than hand-crafted heuristics

Rombach, R. et al. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10684, (2022)

https://doi.org/10.48550/arXiv.2112.10752
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What has ML been useful for?

Automation

Generating insight into the non-linear structure of problems form a statistical perspective
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ML Problem Types and Methods
Optimization

Finding Optima in an
objective fuction

pulse shape/spectrum
optimization
compensating beam
pointing

Shalloo, R. et al. Nat. Comm. 11(1) 6355 (2020)

Methods

(Genetic algorithms)
Bayesian Optimization
Reinforcement Learning
(Control theory)

Classification/Detection

Classifying data as
representing a class or
finding features of relevant
classes in data

defect detection
Methods

SVM
kNN
(deep) neural networks

Generative Modeling

Modeling a given system
Surrogate Modeling
Time series prediction
Data augmentation
Inverse problems

Methods
GAN, VAE, Normalizing
Flows, Diffusion Models,
large transformer models,
...
Gaussian processes

https://doi.org/10.1038/s41467-020-20245-6
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Deep Learning

https://xkcd.com/1838/

https://xkcd.com/1838/


7/17 Machine Learning in Laser System Optimization · February 27, 2024

Deep Learning

https://xkcd.com/1838/

key points to settle:
what to classify / predict?

data
quantity
must be representative of the problem
training / validation / testing

model
size / architechture
training
ability to generalize

⇐ this is a cyle

https://xkcd.com/1838/
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ML vs Deep Learning?

A deep model is one which learns a hierarchy of features/concepts.

Low-level 
feature

Trainable 
classifier

High-level 
feature

Mid-level 
feature
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Digital Twins and Surrogates

Digital Twin: Simulation code/pipeline for
physical system

Rarely available end-to-end
Bound to be idealized model of system

Model of environmental factors?
Model of imperfections in setup?

Surrogate model: Approximate representation
of (simulated) physical system

ML model trained simulation results or
experimental data

Model of macroscopic/coarse observables
(usually)

⇒ Data-driven digital twin can approximate system as-is.
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Data-Driven Earth-Weather Twin: GraphCast
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3) Graph neural netork (GNN)
message-passing on multimesh

10-day weather forecast in < 1 min
accuracy ≳ ECMWF-IFS HRES

https://doi.org/10.1126/science.adi2336
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How?

HRES:
ensemble forecast
includes fluid dynamics

GraphCast:
finds repeating high-level features
which predict future observable
i.e. finds suitable approximations
for given input domain

! trained on ≳ 39 y of data
(1979-2017)
evaluated on following year

⇒ faster, more accurate,
but less generalizable

https://doi.org/10.1126/science.adi2336
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Bayesian Optimization

Jalas S. et al. PRL 126 104801 (2021)

https://link.aps.org/doi/10.1103/PhysRevLett.126.104801
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Getting a Signal from Samples
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Summary

ML methods are based on statistics
⇒ more data better statistics

There is ahost of methods
⇒ try basic analysis first to estimate what is in the data
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