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“ Overview of Applications and Methods

Overview of Applications and Methods
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® What is ML?

m ML model represents a statistically motivated heuristic for given task
m Task domain is defined by given training data

s
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® What is ML?

m ML model represents a statistically motivated heuristic for given task
m Task domain is defined by given training data

Anything not represented in the data is not part if model’s world.
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® What is ML?

m ML model represents a statistically motivated heuristic for given task
m Task domain is defined by given training data
Anything not represented in the data is not part if model’s world.
= Heuristic behavior defined by data, not code
= Different/less bias than hand-crafted heuristics
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® What is ML?

m ML model represents a statistically motivated heuristic for given task
m Task domain is defined by given training data
Anything not represented in the data is not part if model’s world.
= Heuristic behavior defined by data, not code
= Different/less bias than hand-crafted heuristics

Rombach, R. et al. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10684, (2022)
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' What has ML been useful for?

m Automation
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' What has ML been useful for?

m Automation

m Generating insight into the non-linear structure of problems form a statistical perspective

AN =~
5/17 Machine Learning in Laser System Optimization - February 27, 2024 @C“SUS TRl RN TN e Y

concept



“ ML Problem Types and Methods

Optimization

m Finding Optima in an
objective fuction
m pulse shape/spectrum
optimization
m compensating beam
pointing

P

>~

AN
Shalloo, R. et al. Nat. Comm. 11(1) 6355 (2020)
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“ ML Problem Types and Methods

Optimization
m Finding Optima in an
objective fuction

m pulse shape/spectrum
optimization

m compensating beam
pointing

P

Shalloo, R. et al. Nat. Comm. 11(1) 6355 (2020)

= Methods

m (Genetic algorithms)
Bayesian Optimization
Reinforcement Learning
(Control theory)

s
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“ ML Problem Types and Methods

Optimization Classification/Detection
m Finding Optima in an m Classifying data as
objective fuction representing a class or
= pulse shape/spectrum finding features of relevant
optimization classes in data
m compensating beam m defect detection
pointing
———
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Shalloo, R. et al. Nat. Comm. 11(1) 6355 (2020)
= Methods
m (Genetic algorithms)
Bayesian Optimization
Reinforcement Learning
(Control theory)
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“ ML Problem Types and Methods

Optimization Classification/Detection
m Finding Optima in an m Classifying data as
objective fuction representing a class or
= pulse shape/spectrum finding features of relevant
optimization classes in data
m compensating beam m defect detection
pointing = Methods
%\H = SVM
m kNN

\/\u’\/\..\ m (deep) neural networks

Shalloo, R. et a\ Nat. Comm. 11(1) 6355 (2020)

= Methods

m (Genetic algorithms)

m Bayesian Optimization
m Reinforcement Learning
m (Control theory)
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“ ML Problem Types and Methods

Optimization Classification /Detection Generative Modeling
m Finding Optima in an m Classifying data as m Modeling a given system
objective fuction representing a class or m Surrogate Modeling

m pulse shape/spectrum finding features of relevant

m Time series prediction
optimization classes in data m Data augmentation
m compensating beam m defect detection m Inverse problems
pointing m Methods
j\‘_J | | SVM
o m kNN
N/
VA M m (deep) neural networks
A A

Shal\oo‘, R. et al. Nat. Comm. 11(1) 6355 (2020)
= Methods
m (Genetic algorithms)
m Bayesian Optimization
m Reinforcement Learning
m (Control theory)
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“'ML Problem Types

Optimization
m Finding Optima in an
objective fuction

m pulse shape/spectrum
optimization

m compensating beam
pointing

;—\'_’

Shalloo, R. et al. Nat. Comm. 11(1) 6355 (2020)

= Methods

m (Genetic algorithms)

m Bayesian Optimization
m Reinforcement Learning
m (Control theory)

and Methods

Classification/Detection

m Classifying data as
representing a class or
finding features of relevant
classes in data

m defect detection

m Methods

= SVM
= kNN
m (deep) neural networks
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m Modeling a given system

Surrogate Modeling
m Time series prediction
m Data augmentation

m Inverse problems
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“'ML Problem Types
Optimization
m Finding Optima in an

objective fuction

m pulse shape/spectrum
optimization

m compensating beam
pointing
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= Methods
m (Genetic algorithms)
m Bayesian Optimization
m Reinforcement Learning
m (Control theory)

and Methods

Classification/Detection

m Classifying data as
representing a class or
finding features of relevant
classes in data

m defect detection

m Methods

= SVM
= kNN
m (deep) neural networks
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Generative Modeling

m Modeling a given system

m Surrogate Modeling
m Time series prediction
m Data augmentation
m Inverse problems
i

m Methods

m GAN, VAE, Normalizing
Flows, Diffusion Models,
large transformer models,

m Gaussian processes
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R Deep Learning

TH!S 15 YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLIERS ON THE OTHER SIDE.

VHAT IF THE ANSLERS ARE LURONG? )

JUST STR THE PILE. UNTIL
THEY START LOOKING RIGHT

https://xkcd.com/1838/
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R Deep Learning

TH!S 15 YOUR MACHINE LEARNING SYSTET?
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R Deep Learning

TH!S 15 YOUR MACHINE LEARNING SYSTET?
YUP! YOU POUR THE DATA INTO THIS BIG

PILE OF LINEAR ALGEBRA, THEN COLLECT .
THE ANSLIERS ON THE OTHER SIDE. key points to settle:
WHAT IF THE ANSLERS ARE LIRONG? ) m what to classify / predict?
JUST STIR THE PILE UNTIL m data
THEY START LOOKING RIGHT E quantity

m must be representative of the problem
m training / validation / testing

https://xkcd.com/1838/
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R Deep Learning

TH!S 15 YOUR MACHINE LEARNING SYSTET?
YUP! YOU POUR THE DATA INTO THIS BIG

PILE OF LINEAR ALGEBRA, THEN COLLECT .
THE ANSLIERS ON THE OTHER SIDE. key points to settle:
WHAT IF THE ANSLERS ARE LIRONG? ) m what to classify / predict?
JUST STIR THE PILE NTIL m data
THEY START LOOKING RIGHT ® quantity

m must be representative of the problem
m training / validation / testing
m model
m size / architechture
m training
m ability to generalize

https://xkcd.com/1838/
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R Deep Learning

=

http://www.esa.int/spaceinimages/Images/2009/07/EDU_esa_exp_- _Launchers
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key points to settle:
m what to classify / predict?
m data
B quantity

m must be representative of the problem

m training / validation / testing
m model

m size / architechture
m training
m ability to generalize

< this is a cyle
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S ML vs Deep Learning?

A deep model is one which learns a hierarchy of features/concepts.

Low-level Mid-level High-level Trainable
feature feature feature classifier
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“ Data-Driven Digital Twins

Data-Driven Digital Twins
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R Digital Twins and Surrogates

m Digital Twin: Simulation code/pipeline for
physical system
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R Digital Twins and Surrogates

m Digital Twin: Simulation code/pipeline for
physical system

m Rarely available end-to-end
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R Digital Twins and Surrogates

m Digital Twin: Simulation code/pipeline for
physical system

m Rarely available end-to-end

m Bound to be idealized model of system

m Model of environmental factors?
m Model of imperfections in setup?
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R Digital Twins and Surrogates

m Digital Twin: Simulation code/pipeline for m Surrogate model: Approximate representation
physical system of (simulated) physical system
m Rarely available end-to-end m ML model trained simulation results or

. . i tal dat
m Bound to be idealized model of system experimental data

m Model of environmental factors?
m Model of imperfections in setup?
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R Digital Twins and Surrogates

m Digital Twin: Simulation code/pipeline for m Surrogate model: Approximate representation
physical system of (simulated) physical system
m Rarely available end-to-end m ML model trained simulation results or

. . i |
m Bound to be idealized model of system experimental data

m Model of environmental factors?
m Model of imperfections in setup? (usually)

m Model of macroscopic/coarse observables
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R Digital Twins and Surrogates

m Digital Twin: Simulation code/pipeline for m Surrogate model: Approximate representation
physical system of (simulated) physical system
m Rarely available end-to-end m ML model trained simulation results or

m Bound to be idealized model of system experimental data

m Model of environmental factors?
m Model of imperfections in setup? (usually)

m Model of macroscopic/coarse observables

= Data-driven digital twin can approximate system as-is.

~ R P
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™ Data-Driven Earth-Weather Twin: GraphCast

B Predict the next state C Roll out a forecast

m Graph neural netork (GNN)

m message-passing on multimesh

\

E Processor F Decoder

m 10-day weather forecast in < 1min
m accuracy =, ECMWEF-IFS HRES

G Simultaneous multi-mesh message-passing

0 = 1

T
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™ Data-Driven Earth-Weather Twin: GraphCast

A Input weather state B Predict the next state C Roll out a forecast

How?

G Simultaneous multi-mesh message-passing

0 =~ M &

BT
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™ Data-Driven Earth-Weather Twin: GraphCast

A Input weather state B Predict the next state C Roll out a forecast

How?
= HRES:

m ensemble forecast
m includes fluid dynamics

0 = 1

Y
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™ Data-Driven Earth-Weather Twin: GraphCast

A Input weather state B Predict the next state C Roll out a forecast

How?
= HRES:

m ensemble forecast
m includes fluid dynamics

m GraphCast:
m finds repeating high-level features
which predict future observable

m i.e. finds suitable approximations
for given input domain

Lam et al., Science 382, 1416 (2023)
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™ Data-Driven Earth-Weather Twin: GraphCast

A Input weather state B Predict the next state C Roll out a forecast

How?
= HRES:
m ensemble forecast
m includes fluid dynamics
m GraphCast:
m finds repeating high-level features
which predict future observable

m i.e. finds suitable approximations
for given input domain

trained on 2 39y of data
(1979-2017)

evaluated on following year
= faster, more accurate,

but less generalizable

Lam et al., Science 382, 1416 (2023)
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R Optimization

Optimization

o
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a Bayesian Optimization
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Jalas S. et al. PRL 126 104801 (2021)
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= Data

Data

concept
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.Getting a Signal from Samples

n =20
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0.0
=25
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250
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
frequency

P
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.Getting a Signal from Samples

n =20
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.Getting a Signal from Samples

<
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E Summary

Summary
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E Summary

m ML methods are based on statistics
= more data better statistics
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E Summary

m ML methods are based on statistics
= more data better statistics

m There is ahost of methods
= try basic analysis first to estimate what is in the data
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