



## Machine Learning in Laser System Optimization

Jeffrey Kelling<sup>1,2,3</sup>

<sup>1</sup>Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR) <sup>2</sup>Department of Information Services and Computing, Helmholtz-Zentrum Dresden - Rossendorf (HZDR) <sup>3</sup>Faculty of Natural Sciences, Chemnitz University of Technology

February 27, 2024

**1** Overview of Applications and Methods

2 Data-Driven Digital Twins

3 Optimization

4 Data

5 Summary

• 🗇

# **Overview of Applications and Methods**

**1** Overview of Applications and Methods

2 Data-Driven Digital Twins

3 Optimization

4 Data

5 Summary



- ML model represents a statistically motivated heuristic for given task
- Task domain is defined by given training data



- ML model represents a statistically motivated heuristic for given task
- Task domain is defined by given training data

Anything not represented in the data is not part if model's world.



- ML model represents a statistically motivated heuristic for given task
- Task domain is defined by given training data

#### Anything not represented in the data is not part if model's world.

- $\Rightarrow\,$  Heuristic behavior defined by data, not code
- $\Rightarrow$  Different/less bias than hand-crafted heuristics



- ML model represents a statistically motivated heuristic for given task
- Task domain is defined by given training data

Anything not represented in the data is not part if model's world.

- $\Rightarrow\,$  Heuristic behavior defined by data, not code
- $\Rightarrow$  Different/less bias than hand-crafted heuristics



Rombach, R. et al. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10684, (2022)



## What has ML been useful for?

Automation



# What has ML been useful for?

- Automation
- Generating insight into the non-linear structure of problems form a statistical perspective



### Optimization

- Finding Optima in an objective fuction
  - pulse shape/spectrum optimization
  - compensating beam pointing



Shalloo, R. et al. Nat. Comm. 11(1) 6355 (2020)



### Optimization

- Finding Optima in an objective fuction
  - pulse shape/spectrum optimization
  - compensating beam pointing



- Methods
  - (Genetic algorithms)
  - Bayesian Optimization
  - Reinforcement Learning
  - (Control theory)

### Optimization

- Finding Optima in an objective fuction
  - pulse shape/spectrum optimization
  - compensating beam pointing



- Methods
  - (Genetic algorithms)
  - Bayesian Optimization
  - Reinforcement Learning
  - (Control theory)

## **Classification/Detection**

- Classifying data as representing a class or finding features of relevant classes in data
  - defect detection



### Optimization

- Finding Optima in an objective fuction
  - pulse shape/spectrum optimization
  - compensating beam pointing



Shalloo, R. et al. Nat. Comm. 11(1) 6355 (2020)

- Methods
  - (Genetic algorithms)
  - Bayesian Optimization
  - Reinforcement Learning
  - (Control theory)

## **Classification/Detection**

- Classifying data as representing a class or finding features of relevant classes in data
  - defect detection
- Methods
  - SVM
  - kNN
  - (deep) neural networks



### Optimization

- Finding Optima in an objective fuction
  - pulse shape/spectrum optimization
  - compensating beam pointing



Shalloo, R. et al. Nat. Comm. 11(1) 6355 (2020)

- Methods
  - (Genetic algorithms)
  - Bayesian Optimization
  - Reinforcement Learning
  - (Control theory)

## **Classification/Detection**

- Classifying data as representing a class or finding features of relevant classes in data
  - defect detection
- Methods
  - SVM
  - kNN
  - (deep) neural networks

### **Generative Modeling**

- Modeling a given system
  - Surrogate Modeling
  - Time series prediction
  - Data augmentation
  - Inverse problems



### Optimization

- Finding Optima in an objective fuction
  - pulse shape/spectrum optimization
  - compensating beam pointing



Shalloo, R. et al. Nat. Comm. 11(1) 6355 (2020)

- Methods
  - (Genetic algorithms)
  - Bayesian Optimization
  - Reinforcement Learning
  - (Control theory)

## **Classification/Detection**

- Classifying data as representing a class or finding features of relevant classes in data
  - defect detection
- Methods
  - SVM
  - kNN
  - (deep) neural networks

### **Generative Modeling**

- Modeling a given system
  - Surrogate Modeling
  - Time series prediction
  - Data augmentation
  - Inverse problems





### Optimization

- Finding Optima in an objective fuction
  - pulse shape/spectrum optimization
  - compensating beam pointing



Shalloo, R. et al. Nat. Comm. 11(1) 6355 (2020)

- Methods
  - (Genetic algorithms)
  - Bayesian Optimization
  - Reinforcement Learning
  - (Control theory)

## **Classification/Detection**

- Classifying data as representing a class or finding features of relevant classes in data
  - defect detection
- Methods
  - SVM
  - kNN
  - (deep) neural networks

### **Generative Modeling**

- Modeling a given system
  - Surrogate Modeling
  - Time series prediction
  - Data augmentation
  - Inverse problems



- Methods
  - GAN, VAE, Normalizing Flows, Diffusion Models, large transformer models,
  - Gaussian processes





https://xkcd.com/1838/

7/17 Machine Learning in Laser System Optimization · February 27, 2024

( 🗖



https://xkcd.com/1838/

7/17 Machine Learning in Laser System Optimization · February 27, 2024

key points to settle:

what to classify / predict?



• 🗖



https://xkcd.com/1838/

7/17 Machine Learning in Laser System Optimization · February 27, 2024

key points to settle:

- what to classify / predict?
- data
  - quantity
  - must be representative of the problem
  - training / validation / testing





https://xkcd.com/1838/

7/17 Machine Learning in Laser System Optimization · February 27, 2024

key points to settle:

- what to classify / predict?
- data
  - quantity
  - must be representative of the problem
  - training / validation / testing

#### model

- size / architechture
- training
- ability to generalize





http://www.esa.int/spaceinimages/Images/2009/07/EDU\_esa\_exp\_-\_Launchers

key points to settle:

- what to classify / predict?
- data
  - quantity
  - must be representative of the problem
  - training / validation / testing

#### model

- size / architechture
- training
- ability to generalize

 $\Leftarrow \ \text{this is a cyle}$ 



## ML vs Deep Learning?

A deep model is one which learns a hierarchy of features/concepts.





## **Data-Driven Digital Twins**

Overview of Applications and Methods

#### 2 Data-Driven Digital Twins

3 Optimization

4 Data

#### 5 Summary

• 🗖

 Digital Twin: Simulation code/pipeline for physical system



- Digital Twin: Simulation code/pipeline for physical system
- Rarely available end-to-end



- Digital Twin: Simulation code/pipeline for physical system
- Rarely available end-to-end
- Bound to be idealized model of system
  - Model of environmental factors?
  - Model of imperfections in setup?



- Digital Twin: Simulation code/pipeline for physical system
- Rarely available end-to-end
- Bound to be idealized model of system
  - Model of environmental factors?
  - Model of imperfections in setup?

- Surrogate model: Approximate representation of (simulated) physical system
  - ML model trained simulation results or experimental data



- Digital Twin: Simulation code/pipeline for physical system
- Rarely available end-to-end
- Bound to be idealized model of system
  - Model of environmental factors?
  - Model of imperfections in setup?

- Surrogate model: Approximate representation of (simulated) physical system
  - ML model trained simulation results or experimental data
- Model of macroscopic/coarse observables (usually)



- Digital Twin: Simulation code/pipeline for physical system
- Rarely available end-to-end
- Bound to be idealized model of system
  - Model of environmental factors?
  - Model of imperfections in setup?

- Surrogate model: Approximate representation of (simulated) physical system
  - ML model trained simulation results or experimental data
- Model of macroscopic/coarse observables (usually)

 $\Rightarrow$  Data-driven digital twin can approximate system as-is.





11/17 Machine Learning in Laser System Optimization · February 27, 2024

- Graph neural netork (GNN)
- message-passing on multimesh
- 10-day weather forecast in  $< 1 \min$
- $\blacksquare$  accuracy  $\gtrsim$  ECMWF-IFS HRES





11/17 Machine Learning in Laser System Optimization • February 27, 2024



- E



11/17 Machine Learning in Laser System Optimization · February 27, 2024

- How?
- HRES:
  - ensemble forecast
  - includes fluid dynamics





11/17 Machine Learning in Laser System Optimization · February 27, 2024

- How?
- HRES:
  - ensemble forecast
  - includes fluid dynamics
- GraphCast:
  - finds repeating high-level features which predict future observable
  - i.e. finds suitable approximations for *given input domain*





11/17 Machine Learning in Laser System Optimization · February 27, 2024

- How?
- HRES:
  - ensemble forecast
  - includes fluid dynamics
- GraphCast:
  - finds repeating high-level features which predict future observable
  - i.e. finds suitable approximations for *given input domain*
  - ! trained on  $\gtrsim 39$  y of data (1979-2017) evaluated on following year
  - $\Rightarrow$  faster, more accurate,

but less generalizable



# Optimization

Overview of Applications and Methods

2 Data-Driven Digital Twins

### 3 Optimization

4 Data

5 Summary



• 🗖

# **Bayesian Optimization**





HZDR

## Data

**1** Overview of Applications and Methods

- 2 Data-Driven Digital Twins
- 3 Optimization

### 4 Data

#### 5 Summary

## **Getting a Signal from Samples**







## **Getting a Signal from Samples**







## **Getting a Signal from Samples**





# Summary

**1** Overview of Applications and Methods

- 2 Data-Driven Digital Twins
- 3 Optimization

4 Data

#### 5 Summary



■ ML methods are based on statistics ⇒ more data better statistics





- ML methods are based on statistics ⇒ more data better statistics
- There is ahost of methods
  - $\Rightarrow$  try basic analysis first to estimate what is in the data

