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Abstract. In hematology, computational models offer significant po-
tential to improve diagnostic accuracy, streamline workflows, and reduce
the tedious work of analyzing single cells in peripheral blood or bone
marrow smears. However, clinical adoption of computational models has
been hampered by the lack of generalization due to large batch effects,
small dataset sizes, and poor performance in transfer learning from nat-
ural images. To address these challenges, we introduce DinoBloom, the
first foundation model for single cell images in hematology, utilizing a
tailored DINOv2 pipeline. Our model is built upon an extensive collec-
tion of 13 diverse, publicly available datasets of peripheral blood and
bone marrow smears, the most substantial open-source cohort in hema-
tology so far, comprising over 380,000 white blood cell images. To assess
its generalization capability, we evaluate it on an external dataset with
a challenging domain shift. We show that our model outperforms ex-
isting medical and non-medical vision models in (i) linear probing and
k -nearest neighbor evaluations for cell-type classification on blood and
bone marrow smears and (ii) weakly supervised multiple instance learn-
ing for acute myeloid leukemia subtyping by a large margin. A family of
four DinoBloom models (small, base, large, and giant) can be adapted for
a wide range of downstream applications, be a strong baseline for clas-
sification problems, and facilitate the assessment of batch effects in new
datasets. All models are available at github.com/marrlab/DinoBloom.
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1 Introduction

Hematology, the study of blood and blood-related diseases, relies heavily on
the microscopic examination of peripheral blood and bone marrow smears. This
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practice is integral to diagnosing hematological diseases, such as acute myeloid
leukemia (AML) [15,3]. Currently, differential blood counts still rely on manual
cytomorphological analysis of at least 200 individual white blood cells (WBC)
per patient, where exact evaluation is crucial for early and precise diagnosis [13].
This labor-intensive process has resisted automation, remaining a domain for
trained experts. However, it suffers from significant intra- and inter-expert vari-
ability, complicating diagnosis in environments that lack trained personnel [9].

Recent advances in deep learning propose solutions to the challenges in hema-
tology, such as classifying leukemia subtypes from microscopic images [20,18].
However, the transition from manual to automated analysis requires robust mod-
els that can deal with limited data, strong batch effects, and largely varying
cell phenotypes. In particular, for weakly-supervised settings, such as multiple
instance learning (MIL) for patient-level disease prediction, a strong feature ex-
tractor for single blood cells is necessary as supervised learning is not possible.

Still, most approaches so far rely on supervised training sets with correspond-
ing datasets. Rastogi et al. [24] train a convolutional neural network (CNN) as
a feature extractor on the AML Matek dataset [20] on 18,365 single-cell images
from peripheral blood smears. Hehr et al. [12] train a feature extractor fully
supervised on a cell classification task on additional data from the same domain
and subsequently train the MIL aggregation model.

Large-scale self-supervised training on diverse datasets has transformed the
domain of computer vision on natural images [10,5]. In the medical imaging
domain, especially, in histopatholoy, domain specific self-supervised representa-
tion learning on large sets of unlabeled images [29,30] has shown to improve
downstream tasks in MIL settings [28]. To this end, DINO [5] and its succes-
sor DINOv2 [23] have emerged as a pipeline well-suited to train these feature
extractors [6,27,8]. However, to date, there is no comparable effort tackling the
challenges in the domain of hematology.

We propose DinoBloom (Dino Blood Model), a model family based on vision
transformers trained with a customized DINOv2 [23] pipeline to provide rich
visual features for hematological single-cell image analysis. The models are able
to extract highly predictive features even on unseen datasets that can be used for
few-shot classification, multiple instance learning or cell embeddings potentially
characterizing disease profiles while offering explainable features for enhanced
interpretability. The main contributions of our work are:

– We introduce DinoBloom, the first large-scale self-supervised trained models
designed explicitly for single-cell hematology image analysis.

– We assemble the largest cohort in hematology comprising 13 datasets of
peripheral blood and bone marrow smears.

– We show that DinoBloom models are effective in capturing diverse visual
features of single cells across tasks on both in-domain and out-of-domain
datasets for cell-type classification and leukemia subtyping.

– We provide open access to all DinoBloom models as well as the source code
and parameters used for training, encouraging the research community to
collaboratively build upon our work.
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Fig. 1. Data and model overview of our pipeline. (a) All 13 datasets used in this
study: dashed lines indicate datasets split into training data for DinoBloom and test
data for downstream evaluations, continuous line indicates the dataset was completely
held out for testing purposes. (b) Modified DINOv2 pipeline without local crops for
model training. We evaluate the performance on three downstream tasks: (c) WBC
type classification on the external dataset Acevedo, (d) AML subtype classification via
multiple instance learning, and (e) bone marrow WBC type classification.

2 Datasets

To the best of our knowledge, we collected the largest hematology cohort with
13 publicly available datasets of in total 380,000 blood cell images, fusing the
domains of peripheral blood and bone marrow smears (Fig. 1a). It consists of
the following datasets: The Bone Marrow Cytomorphology (BMC) dataset con-
tains 171,373 de-identified, expert-annotated cells from bone marrow smears
of 945 patients [18]. In contrast to all other datasets included in this study, the
bone marrow smears were stained using the May-Grünwald-Giemsa/Pappenheim
stain. The AML Hehr dataset includes 81,214 single-cell images from 189 pa-
tients, covering four genetic AML subtypes and a healthy control group, sourced
from annotated patient-level blood smears. The LA (LabAnonymous) dataset
consists of over 40,000 images of peripheral blood smears. The dataset will be
made publicly available through a different publication. The AML Matek dataset
consists of 18,365 expert-labeled single-cell images with 15 heavily imbalanced
classes taken from peripheral blood smears of 100 patients diagnosed with AML,
as well as 100 healthy patients [19,20]. Acevedo encompasses 17,092 images of
WBCs labeled into 11 classes [1]. The Raabin dataset features 10,175 cropped
WBCs, which are labeled by experts into five classes [17]. The NuClick dataset
was created from 11,000 WBC images of four classes to generate 2,689 images of
artificially overlapping nuclei [16]. The Warty pig dataset contains 1,408 cropped
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Table 1. Training configuration of DinoBloom models.

Model Batch size Train time Feature dim #params

DinoBloom-S 1216 1:30 h 384 22 M
DinoBloom-B 960 0:45 h 768 86 M
DinoBloom-L 448 1:00 h 1024 304 M
DinoBloom-G 208 4:00 h 1536 1136 M

and classified, plus 1,463 augmented WBC images of juvenile Visayan warty
pigs [2]. The public part of the LISC dataset consists of 157 WBC images as
well as several augmented versions of them, totaling 2263 images [25]. Chula
[22] is a red blood cell segmentation dataset and holds 706 single images. The
SSLSeg datasets contain 300 images of WBCs, stemming from two different
sources (200/100 images) [31]. The Blood Cell Count and Detection (BCCD)
dataset was created to detect blood cells and includes 364 images with bounding
box labels [21]. The Aslan blood cell detection dataset offers 100 images of white
and red blood cells taken from a light microscope [4].

3 Methods

DINOv2 finetuning. We train our models that are based on vision transform-
ers (ViT) [7] in different sizes using the DINOv2 framework. Following [26], we
use the pretrained checkpoints to efficiently finetune the vision transformer on
our multi-cohort dataset. The self-supervised learning framework DINOv2 em-
ploys a teacher-student architecture with an image-based loss on the class token
of the DINO head and a patch-based loss on the class token of the masked
patches from the iBot head (Fig. 1b). We remove the global-local crop loss as
we found it hampers performance when learning representations on the single-
cell images in blood and bone marrow datasets. Images are resized to 224×224
pixels. The models are trained on 8 NVIDIA A100-SXM4-40GB GPUs with an
AMD EPYC 7742 64-Core CPU. All models show similar convergence patterns
and reached their peak performance between 4,000 and 8,000 iterations, after
which downstream task performance drops slightly. Depending on the model
and corresponding batch size, 4,000 iterations cover the training set between 1.7
(batch size 208, DinoBloom-G) up to 10 times (batch size 1,216, DinoBloom-S).
Used batch size, feature dimension, and training time, as well as the number of
parameters, can be inferred from Table 1.

Train and test data.We train the DinoBloom models on all datasets except
the Acevedo dataset, which is kept as external test set. The other two datasets
used for evaluation were split into train/test (80/20). Only training data was used
to train our DinoBloom models. We evaluate the downstream task performance
using the same train/test split. The following datasets and settings are used:
– Acevedo is the smallest of the peripheral blood datasets with complete image-

level classification exhibiting a strong batch effect (Fig. 1a), hence serving
as a good measure of the generalization capabilities of our model.
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Table 2. Evaluation on peripheral blood: Image-level WBC classification on Acevedo
dataset and patient-level AML subtyping on AML Hehr dataset. Best results are
marked in bold, second best results are underlined. Standard deviation in the ABMIL
setting was obtained by 5-fold cross-validation. Performance is measured in weighted
F1-score (wF1) and balanced Accuracy (bAcc).

Acevedo AML Hehr

1-NN 20-NN Linear probe ABMIL
wF1 bAcc wF1 bAcc wF1 bAcc wF1 bAcc

ResNet 50 58.8 52.6 65.6 58.7 81.3 75.4 81.9±9.7 81.5±9.6

ResNet 50 trunc 68.5 62.4 74.0 67.8 87.5 81.6 41.5±11.7 45.9±10.0

DINOv2 ViT-S 72.9 65.6 78.5 70.8 87.7 82.0 52.5±11.8 54.5±10.0

DINOv2 ViT-B 71.9 64.8 77.3 69.9 87.8 81.8 49.6±17.3 52.2±14.3

DINOv2 ViT-L 72.2 64.9 77.8 72.4 89.1 83.5 51.5±16.6 53.6±13.5

DINOv2 ViT-G 77.8 70.4 81.9 74.2 90.1 84.5 21.1±13.5 28.6±10.2

CTransPath 80.8 73.9 83.1 76.8 88.0 82.5 60.2±12.6 60.9±11.8

Phikon ViT-B 83.3 76.5 85.1 78.7 88.2 82.7 81.8±8.3 81.5±8.5

DinoBloom-S (ours) 86.4 80.5 90.0 84.5 90.1 84.5 93.0±3.0 92.3±3.4

DinoBloom-B (ours) 87.4 81.9 90.5 85.4 90.7 85.5 92.7±2.9 91.9±3.1

DinoBloom-L (ours) 88.9 83.2 91.3 86.1 91.2 86.0 91.7±2.4 91.0±2.7

DinoBloom-G (ours) 89.1 83.5 91.4 86.4 91.8 86.6 93.1±2.5 92.4±2.8

– The AML Hehr dataset is divided into train/test (80/20) on patient level.
It includes 101,949 WBCs from 242 patients across four AML subtypes:
CBFB::MYH11, NPM1, PML::RARA, and RUNX1::RUNX1T1 and a healthy
control class.

– The BMC dataset is split into train/test (80/20) as it is the only bone
marrow dataset. It contains 21 heavily imbalanced classes (Fig. 1e).

Downstream evaluations. In all downstream experiments, we compare
the following feature extractors: (i) the non-medical-domain models ImageNet-
pretrained ResNet50 [11] (full and truncated) and (ii) the pretrained DINOv2
checkpoints, trained on LVD-142M [23]; (iii) the medical-image domain feature
extractors CTransPath [30], trained on 14M patches from TCGA and PAIP, (iv)
the Phikon ViT-B model [8], trained on PanCancer40M from TCGA; and (v)
our models DinoBloom-S, -B, -L, and -G.

We evaluate the performance of all supervised classifier models by linear
probe and k -nearest neighbors (k -NN) for cell-type classification and in a weakly-
supervised multiple instance learning (MIL) setting for AML subtyping. For
linear probe, the sklearn LogisticRegression class is used with l2-regularization
coefficient of c×n

100 where n is the number of training samples, and c is the number
of classes. For the MIL evaluation, similar to the Hehr et. al [12] framework, we
deploy a dedicated classifier head, structured as a two linear layer architecture
with an intermediary ReLU activation, tailored to map the aggregated latent
vectors of a patient to a class prediction.
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Table 3. Evaluation on bone marrow: WBC classification on the dataset BMC with
21 highly imbalanced classes.

1-NN 20-NN Linear probe
wF1 Acc bAcc wF1 Acc bAcc wF1 Acc bAcc

ResNet 50 37.6 37.3 21.1 47.4 50.0 23.0 64.1 65.2 39.6
ResNet 50 trunc 46.7 46.4 31.2 57.5 59.8 33.0 74.5 75.0 49.8
DINOv2 ViT-S 43.2 43.2 25.0 52.4 55.6 26.5 68.1 69.0 44.9
DINOv2 ViT-B 39.8 39.6 23.9 49.3 55.6 24.1 70.8 71.5 48.5
DINOv2 ViT-L 39.4 39.2 24.5 48.9 52.2 24.0 71.0 71.6 47.8
DINOv2 ViT-G 41.0 41.0 22.6 50.4 53.7 24.4 73.5 74.0 52.1
CTransPath 49.1 48.7 42.0 58.5 60.3 36.1 74.1 74.9 52.2
Phikon ViT-B 47.5 47.2 40.8 57.1 59.0 35.5 73.2 73.8 54.4

DinoBloom-S (ours) 78.4 78.3 62.0 84.2 84.8 55.6 85.7 85.9 71.4
DinoBloom-B (ours) 79.6 79.5 65.8 83.7 84.1 57.1 85.5 85.6 70.7
DinoBloom-L (ours) 78.8 78.8 57.7 83.6 84.0 56.3 84.9 85.0 64.4
DinoBloom-G (ours) 80.0 79.9 59.4 83.8 84.2 56.2 84.9 85.0 69.3

4 Results

Peripheral blood. DinoBloom models outperform existing models on single
WBC classification on the external dataset Acevedo by a large margin in all
variants. There is a strong performance gain over the original DINOv2 models,
e.g., ViT-S with 71.9 weighted F1-score on 1-NN vs. DinoBloom-S 86.4, ViT-
G 77.8 vs. DinoBloom-G 89.1 (Table 2). The histopathology domain-specific
feature extractors CTransPath and the recently released Phikon (Vit-B) model
perform better than models with non-medical pretraining, both models perform
roughly equally in linear probing, while Phikon has a slightly better performance
in k-NN evaluations. However, DinoBloom models do not only perform better
than their corresponding baseline from DINOv2, but even our smallest model
performs better than all other tested models, irrespective of their size. One can
also observe that the larger variants of DinoBloom models perform better com-
pared to smaller versions, e.g., DinoBloom-G vs. DinoBloom-B vs. DinoBloom-S
with the weighted F1-score on 1-NN (89.1 vs. 87.4 vs. 86.4).

DinoBloom effectively serves as a feature extractor for training a weakly-
supervised AML subtype classifier with ABMIL [14] aggregation. In our experi-
ments, DinoBloommodels achieve a weighted F1-score between 91.7 (DinoBloom-
L) and 93.1 (DinoBloom-G), while the second best models are ResNet50 and
Phikon Vit-B with 81.9 and 81.8, respectively.

Bonemarrow cytology. In line with the results on the Acevedo dataset,
DinoBloom models outperform both non-medical and medical models on bone
marrow WBC classification by even larger margins. The classification task on
BMC is heavily imbalanced with 21 classes and over 170, 000 samples in total,
where some classes have a very low sample count, such as abnormal eosinophils
(8) or smudge cells (42, Fig. 1e). Despite the challenging task, DinoBloom-B
reaches a balanced accuracy of 65.8 and an accuracy of 79.5 in 1-NN eval-
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Fig. 2. Low dimensional representation (UMAP) of DinoBloom-B features of over
80,000 single cells from the training set of the dataset AML Hehr. Center: UMAP
with original images. Five arcs: UMAP for healthy patients (blue) and patients with
CBFB::MYH11 (orange), NPM1 (green), PML::RARA (red), and RUNX1::RUNX1T1
(purple), for every class: all patients in the test set (bright) and embedding of one
random test patient (dark). The myeloblast cluster and doublet cluster are barely pop-
ulated for healthy controls. Different AML entities present with distinct cell patterns
within the embedding.

uation compared to 42.0 and 48.7 of the next best model (Table 3). Similar
large gaps in performance are also observed in linear probing, where our best
model, DinoBLoom-S, achieves a balanced accuracy of 71.4 compared to 52.2 of
CTransPath. Notable is also the doubling of performance in 1-NN weighted-F1
compared to the DINOv2 baseline that can be observed for the ViT-B variant.
Compared to the peripheral blood tasks, the performance of the larger variants
of DinoBloom is not consistently better than that of the smaller variants.

Patient embeddings.We show a potential clinical application of our model:
The low-dimensional embedding of AML and healthy patients from the training
set of the AML Hehr dataset shows that related cell types cluster well (Fig. 2).
Based on this fit, new patients (from the test set) are embedded into the same
lower dimensional feature representation. The distribution of cell types is clearly
distinct between healthy patients and all AML subtypes: as expected there are
almost no cells in the Myeloblast related cluster in the healthy group. More subtle
differences can be seen between clustering profiles of distinct AML subtypes,
e.g., CBFB::MYH11 and RUNX1::RUNX1T1. The cell embeddings of our model
could give clinicians an easy-to-grasp visualization of the cell distribution of a
patient and help to verify the manual quantification of different cell types. For
instance, experts could identify the presence of myeloblasts within an entire
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Fig. 3. PCA visualization of the patch tokens on the test data of Acevedo (external)
and BMC. Comparison between DinoBloom-B, the second best model Phikon (ViT-B),
and the pretrained DINOv2 ViT-B. Colors represent the values of the first three PCA
components. DinoBloom-B can differentiate between nuclei, cytoplasm, surrounding
red blood cells, and background.

smear, and gates could be applied to the embedding to facilitate morphology-
based cell counting, similar to FACS analysis.

Interpretability. In Fig. 3, we show that our model learns robust and mean-
ingful features across domains and compare it to its baseline, the pretrained DI-
NOV2, and the second best performing model Phikon. We compute the principal
components for the encoded patches of four images per dataset and visualize the
first three components of each patch of size 14×14 (DinoBloom-B, DINOv2 Vit-
B) and 16×16 pixels (Phikon), respectively, in RGB colors. One can clearly
observe that DinoBloom captures shapes of nuclei, cell body, and the surround-
ing cells. While the other two models also capture shape and roughly outline
cells, they do not catch fine grained details, as can be especially seen in the case
of the nuclei, that only DinoBloom is able to differentiates from the whole cell.

5 Conclusion

With DinoBloom, we introduce a publicly available family of foundation models
for single cell images in hematology, trained on the largest multi-cohort dataset
with over 380,000 WBC images of 13 datasets. We show its strong generalization
capabilities to external datasets despite strong batch effects. Our experiments
demonstrate that DinoBloom extracts rich features from hematology images,
with its effectiveness demonstrated for cell-type classification and AML subtyp-
ing compared to non-medical and medical vision models. We also support this
claim through visualizations showing that our model detects important hemato-
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logical concepts, such as nuclei, cytoplasm, and red blood cells, which could be
further leveraged for zero-shot segmentation. We believe that the generalizable
cell embedding capabilities of our DinoBloom models offer grerat potential in
assisting clinicians in their tedious manual work of cell detection and classifica-
tion.
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