FLUKA

Scoring example

23rd FLUKA Beginner's Course Lanzhou University Lanzhou, China June 2–7, 2024

Exercise: USRBIN

Start from the solution of Geometry_exercise (either copy your .inp and .flair files and rename them to example_score, or download/copy the file Geometry_exercise/geometry_solution.inp and rename it):

mkdir example_scoring

- cp Geometry_exercise/geometry_solution.inp example_score/ex_Score.inp
- cd example_scoring
- Open in FLAIR or with your preferred editor
- Add USRBIN scoring to:
 - 1) score Energy on a CYLINDRICAL GRID (R, Φ , Z covering the target and surroundings: 0 < r < 10 cm, -5 < z < 15 cm, with cells having $\Delta r = \Delta z = 1$ mm, $\Delta \Phi = 2\pi$, Output unit = 40 BIN
 - 2) score Neutron Fluence on the same grid, Output unit = 41 BIN
 - 3) score Charged Hadron Fluence on the same grid, Output unit = 42 BIN
- Run 5 cycles, 1000 primaries each

Exercise: USRBIN

1) Add USRBIN to score ENERGY on a CYLINDRICAL GRID (R, Φ , Z) covering the target and the surroundings: 0 < r < 10 cm, -5 < z < 15 cm, with cells having $\Delta r = \Delta z = 1$ mm, $\Delta \Phi = 2\pi$

* Energy depositi	lon [GeV	/cm^3]			
*++	2	++.	+	5+6+.	7
USRBIN	11.	ENERGY	-40.	10.0	15.0TargEne
USRBIN	0.0		-5.0	100.	200. &
Type: R-Φ-Z ▼ Part: ENERGY ▼		Rmin: 0.0 X: Zmin: -5.0		Unit: 40 BIN ▼ Rmax: 10.0 Y: Zmax: 15.0	Name: TargEne NR: 100. NФ: NZ: 200.

• This is an R- Φ -Z binning (WHAT(1) = 11.), scoring energy density (generalized particle ENERGY, or FLUKA PID 208), writing unformatted output to unit 40, spanning 0 < R < 10 cm in 100 bins, $0 < \Phi < 2\pi$ in 1 bin (default), -5 < Z < 15 cm in 200 bins.

Exercise: USRBIN

2) Add USRBIN to score Neutron Fluence on the same grid as before:

* Neutron fluence	e [1/c	m^2]			
*+1+	2	+3	.+4	.+	.6+7
USRBIN	11.	NEUTRON	-41.	10.0	15.0TargNeu
USRBIN	0.0		-5.0	100.	200. &
■ USRBIN ^{Type:} R-Φ-Z ▼ ^{Part:} NEUTRON ▼		Rmin: 0.0 X: Zmin: -5.0		Unit: 41 BIN ▼ Rmax: 10.0 Y: Zmax: 15.0	Name: TargNeu NR: 100. NФ: NZ: 200.

- This is an R- Φ -Z binning (WHAT(1) = 11.), scoring neutron fluence (particle NEUTRON, or FLUKA PID 8), writing unformatted output to unit 41, spanning 0 < R < 10 cm in 100 bins, $0 < \Phi < 2\pi$ in 1 bin (default), -5 < Z < 15 cm in 200 bins.
- 3) Add USRBIN to score Charged Hadron Fluence (HAD-CHAR) on the same grid as before, writing to output unit = 42 BIN.
 - You can use the store button in FLAIR to clone the previous scorer, then modify Unit: and Part: accordingly
 - Or simply the copy the two lines in your favorite text editor ...

Run the input file by clicking the **Q** button in the "Run"-menu of FLAIR:

🔚 🧐 👻 🍋 🗍 🙀 Flair 🛛 🔯 Input	🚴 Run 🛛 💕 Geometry 📃	Plot		🔚 Calculator 🔻 📢
Paste Cut Clipboard View	Move Up X Remov Move Down & Loop Add ave Rename & Clone	e & *Default Y Prev: 0 0 2 Cyc Continue No: 5 0 2 Clean X Kill Attach To: 5 0 Clean X Kill	Refresh	[Ctrl-Enter]
		Run		🔺 🗶
+ Run Spawn	Title FLUKA Course Exe			
<ex_score></ex_score>	Primaries 0		Rnd 0	
	Time 0		Exe	× 😂
1	Defines	Default Defines		
1	Name		Value	
	Progress			
	Status: Finished OK	Input: ex_Score		Dir:
1	Started:	ETA:		Time/prim:
1	Elapsed:	Cycle:		Run:
	Cycles:			
	Primaries:			
Inp: ex_Score.inp	Running 0 out of 1			a 🛠

Or execute FLUKA on the commandline:

\$FLUPRO/flutil/rfluka -e \$FLUPRO/flukahp -NO -M5 ./ex_Score

Exercise: USRBIN - Plotting of the data

Plots can be created in the "Plot" menu - add new plots or clone from existing ones:

A Cut Copy Copy	[®] Run [®] Geometry [®] Piot [®] Save [®] Piot [®]				00 Viewer	r
0	2001	Plot				A ×
🗢 Red 🗛	Title:				Display: 0	0
Green Bue Magenta Augenta ex. Score: 40 plot ex. Score: 41 plot ex. Score: 42 plot ex. Score: 52 plot ex. Score: 52 plot ex. Score: 54 plot ex. Score: 54 plot	Axes V Label X: Y:			Log Mir	n Max	
	Center x: 0.0 y: 0.0	Basis Axes ▼ X:Y X·Y Y·Z -U	Extends Δu: Δv:		Plot Type: Material Run:	V
A ex_Score_57_plot ▲ ex_Score_60_plot	7	X-2 SWAP -V		<u>.</u>	set Advance	
np: ex_Score.inp	Plot completed					a 🕺

Plot types:

- For aeometry plots Geometry
- USRBIN
- For plotting the output of USRBIN
- USR-1D To plot single differential quantities
 - from USRBDX, USRTRACK, USRCOLL, **USRYTELD**

- USR-2D
- RESNUCLE
- USERDUMP

- The "Wizard" 🛙 button scans the input and creates automatically a plot for each processed unit
- Set a unique filename for each plot
 - This filename will be used for auxiliary files that the plot needs
- To plot double differential distributions from USRBDX
- To plot 1d or 2d distributions from RESNUCLEI
- To plot the output of USERDUMP Useful for visualizing source distribution www.fluka.ora

Scoring example

6

FLAIR uses GNUPLOT to create the plots:

	Plot			
Red Green Blue Magenta	Title: [Energy deposition (GeV/cm3/prim) Options font: V[0] Options:	Display: c		
ex_Score_40_plot	grid aspect: 0.5 Auto lines:			
ex_Score_41_plot ex_Score_42_plot ex_Score_50_plot	Axes	Log Min Max		
ex_Score_52_plot ex_Score_54_plot	x: Z [cm]	-5 15.		
ex Score 55 plot	y: R [cm]	0 10.		
ex_Score_57_plot	col E dep. (dev/cma/prim)	✓ 1E-10		
	Cycles: 5 Primaries: 5000 Weight: 5000.0 Time: Binning Info Det: 1 TargEne ▼ R: [010] × 100 (0.1)	Min: 9.18463873E-13		
	Type: 11: R-Φ-Z Φ: [-3.14159] x 1 (6.28319)	Max: 0.655550897		
	Score: Energy 2: [-5 15] X 200 (0.1)	Trop: 2D Projection		
		▼ Get Geometry		
	· Φ: Ψ1 Φ	V swap Use: -Auto-		
	0 Z:	V remore Pos:		
		Axes: Auto		

- For all plots one can specify: Title + options, filename, axis labels, legends, Gnuplot commands
- The button (Ctrl-Enter) will generate all the necessary files (if they don't exist yet) and produce the plot
- The Section will remove al files generated by FLAIR during plotting (useful when the plot name was changed)
- Additional GNUPLOT commands can be specified in the white field, e.g.:
 - Change colorband label offset
 - Change format of colorband (cb) palette values to "%2.0E"

WHAT(2) = ENERGY: Energy deposition from a 3.5 GeV proton beam hitting at [0., 0., 0.] directed along z. Results are normalized to **GeV/cm³ per primary**

This plot is a 2D projection of a 3D structure \rightarrow the result is averaged over the 3rd coordinate. Projection limits can be set in FLAIR.

Scoring example

www.fluka.org

Same for WHAT(2) = NEUTRON: Neutron fluence from a 3.5 GeV proton beam hitting at [0., 0., 0.] directed along z. Results are normalized to neutrons/cm² per primary

Same for WHAT(2) = HAD-CHAR: Charged hadron fluence from a 3.5 GeV proton beam hitting at [0., 0., 0.] directed along z. Results are normalized to **charged** hadrons/cm² per primary

Charged Hadrons fluence [had/cm2/prim]

 Score CHARGED HADRONS at the outer surface of the lead segment (from TARGS3 to INAIR). WHAT(1)=99 means: fluence scoring, one-way only, logarithmic intervals in energy from 1 MeV to 10 MeV in 40 ntervals, and one angular interval (default).
 WHAT(6) is a normalization factor: setting it equal to the surface area provides results normalized to cm⁻² (unit of fluence) GeV⁻¹ sr⁻¹ per primary particle. Write the output to unformatted unit 50:

* charged hadron fluence exiting lead target
USRBDX 99. HAD-CHAR -50. TARGS3 INAIR 329.87Sp3ChH
USRBDX 10. 0.001 40. &

charged hadron fluence exiting le	ad target	^{Unit:} 50 BIN ▼	Name: Sp3ChH
^{Type:} Φ1,LogE,LinΩ ▼	Reg: TARGS3 ▼	to Reg: INAIR 🔻	Area: 329.87
Part: HAD-CHAR 🔻	Emin: 0.001	Emax: 10.	Ebins: 40.
	Ωmin:	Ωmax:	Ωbins:

Repeat the same between TARGS1 and TARGS2, and between TARGS2 and TARGS3 (take care to use the correct normalization factor!).

Scoring example

- 2) Score CHARGED HADRONS at the surface between 2nd and 3rd section, but in 3 angular bins:
- * double-differential charged hadron fluence entering lead target
 USRBDX 99. HAD-CHAR -54. TARGS2 TARGS3 78.5398Sp2ChHA
 USRBDX 10. 0.001 40. 3. &

double-differential charged hadro	on fluence entering lead targ	et	
▲USRBDX		Unit: 54 BIN 🔻	Name: Sp2ChHA
^{Type:} Φ1,LogE,LinΩ ▼	Reg: TARGS2 ▼	to Reg: TARGS3 🔻	Area: 78.5398
Part: HAD-CHAR V	Emin: 0.001	Emax: 10.	Ebins: 40.
	Ωmin:	Ωmax:	Ωbins: 3.

 $R_{TARG} = 5 \text{ cm}$ $Z_{TARGS1} = Z_{TARGS2} = 1 \text{ cm}$ $Z_{TARGS1} = 8 \text{ cm}$

Area between TARGS2 and TARGS3: $\pi \text{ R}_{\text{TARG}^2}$ = **78.5398 cm**²

Area between TARGS3 and INAIR: $\pi R_{TARG} Z_{TARGS3} + \pi R_{TARG}^2$ = **329.87 cm**² The result shows the evolution of charged hadron spectra at the different surfaces. post-processed results are normalized to GeV⁻¹ cm⁻² per primary (only if surface area is explicitly given).

• Lethargy plots are used to display spectra where the energy extends over may orders of magnitude

$$y = \frac{dn}{d(logE)} = E \frac{dN}{dE}$$

• In this way, the area of each bin is proportional to the corresponding integral flux, giving an immediate feeling which energy bin or region contributes more or less particles. From post-processing, we get **single** differential spectra since we asked for one angular bin only

Scoring example

Value:

Exercise: USRBDX - Results

Double-differential charged hadron spectra for 3 consecutive solid angle bins results are normalized to **GeV⁻¹ sr⁻¹ cm⁻² per primary** (only if surface area is explicitely given) From post-processing, we get **double** differential spectra, since we asked for more than one angular bin, but the angle-integrated spectrum is provided as well on top

Scoring example

www.fluka.org

Exercise: USRTRACK

 Score the track-length of CHARGED HADRONS in TARGS3, with logarithmic binning in energy (WHAT(1)=-1) using 40 bins between 1 MeV and 10 GeV. Normalize with the region volume in order to have the results in GeV⁻¹ cm⁻² per primary particle. Write the output to unformatted unit 55:

* charged had	dron flu	ence in lead	target			
*+1	.+2.	+3	+4	+5	+6	.+7
USRTRACK	-1.	HAD-CHAR	-55.	TARGS3	628.31	40.TrChH
USRTRACK	10.	0.001				&
charged hadron flue	ence in lead	target		Unit: 55 BIN	-	
Type: LogE,G	roupwise 🔻	Reg: TARGS3 ▼		Emax: 10	•	Vol: 628.31 Bins: 40
HAD-Ch		0.001		10.		40.

Remember: USRTRACK scores differential fluence in a region, USRBDX scores fluence or current on a surface, and USRBIN scores e.g. fluence in volumes and gives no differential information.

Track-length based fluence of charged hadrons in region TARGS3, plotted as a lethargy plot:

Track-length of charged hadrons in TARGS3

Exercise: USRYIELD

- Score plain double-differential yield (continuation card WHAT(6)=3) for pions, with the first quantity polar angle (degree) and second quantity kinetic energy (WHAT(1)=124), between TARGS3 and INAIR, between 0 and 180 degrees in 18 bins and between 0 and 10 GeV:
- * charged pion angular distribution exiting lead target

USRYIELD	124.	PIONS+-	-57.	TARGS3	INAIR	1.YieAng
USRYIELD	180.	0.0	18.	10.	0.0	3 . &
charged pion angular VUSRYIELD ^{Ie:} Polar θ la Norm: 1. to Reg: INAIR ▼	distribution (b deg ▼	exiting lead target Type: Yield ▼ Ia: Ekin GeV ▼ Part: PIONS+- ▼ Min1: 0.0 Min2: 0.0		Unit: 57 BIN ▼ ^{IP:} Groupwise ▼ Yield: ▼ Max1: 180. Max2: 10.		Name: YeAng Log Linear ▼ J ^{eg:} TARGS3 ▼ Mins1: 18. Kind: d2N/dx1dx2 ▼

Remember: Only one interval is possible for the second variable, but results are normalized as double-differential quantities (in this case, charged pions yield in GeV⁻¹ sr⁻¹ per primary).

Use WHAT(6) = 3 for plain double differential yield, DEFAULT is plain double-differential cross section!

USRYIELD - Result

Pion angular distribution:

Use gnuplot commands to plot with FLAIR:

Scoring example

www.fluka.ora

www.fluka.org