
Fundamentals of Monte Carlo
simulations with FLUKA

23rd FLUKA Beginner’s Course
Lanzhou University

Lanzhou, China

June 2–7, 2024

;

;

1
The radiation transport problem

Radiation source Propagation Detection

Photons,
Leptons (e± , µ± , τ± , ν),
Hadrons (n, p, π, Σ, ...),
Heavy ions (Z, A),
Radioactive sources

Cosmic rays,
Colliding particle beams,
Synchrotron radiation,

“Monoenergetic”/Spectral
Energies up to several
PeV and down to few keV
(thermal energies for
neutrons)

Arbitrary geometry,
various bodies,
materials, compounds

Radiation-matter
interacting machanisms

Secondary particles,
Particle shower,
Material activation
Magnetic & electric fields,
...

Measure/estimate/score

Energy-angle particle
spectra,
Deposited energy,
Material damage,
Biological effects,

Radioactive inventories,...

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

2
Radiation transport calculations with the Monte Carlo method

In radiation transport calculations, radiation particles are “tracked” through a (often complex)
geometry. At each “step” along its trajectory, the particle undergoes an “interaction” in which
it can

scatter (elastically or inelastically)

be absorbed

produce (secondary) particles (which are subsequently transported through the geometry)

(. . .)

based on probabilities which depend on the particle properties, the energy and momentum
of the particles and the present conditions at the present position (material, electromagnetic
fields, . . .).

The underlying probability distributions are provided by the radiation transport
program either in the from of tabulations (often much faster to evaluate) or from physical
models (more precise). The fact that many independent event histories are simulated makes
the procedure highly parallelizable (do several “bunches” or “runs” and combine the results
using the Central Limit Theorem).

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

3
Radiation transport calculations with the Monte Carlo method

In radiation transport calculations, radiation particles are “tracked” through a (often complex)
geometry. At each “step” along its trajectory, the particle undergoes an “interaction” in which
it can

scatter (elastically or inelastically)

be absorbed

produce (secondary) particles (which are subsequently transported through the geometry)

(. . .)

based on probabilities which depend on the particle properties, the energy and momentum
of the particles and the present conditions at the present position (material, electromagnetic
fields, . . .). The underlying probability distributions are provided by the radiation transport
program either in the from of tabulations (often much faster to evaluate) or from physical
models (more precise).

The fact that many independent event histories are simulated makes
the procedure highly parallelizable (do several “bunches” or “runs” and combine the results
using the Central Limit Theorem).

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

4
Radiation transport calculations with the Monte Carlo method

In radiation transport calculations, radiation particles are “tracked” through a (often complex)
geometry. At each “step” along its trajectory, the particle undergoes an “interaction” in which
it can

scatter (elastically or inelastically)

be absorbed

produce (secondary) particles (which are subsequently transported through the geometry)

(. . .)

based on probabilities which depend on the particle properties, the energy and momentum
of the particles and the present conditions at the present position (material, electromagnetic
fields, . . .). The underlying probability distributions are provided by the radiation transport
program either in the from of tabulations (often much faster to evaluate) or from physical
models (more precise). The fact that many independent event histories are simulated makes
the procedure highly parallelizable (do several “bunches” or “runs” and combine the results
using the Central Limit Theorem).

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

5
Probability distributions

• A random variable X describes the outcome of an experiment whose value we cannot
predict with certainty. But nevertheless we know:

- Its possible values: X in [Xmin , Xmax],
- How likely each value of X is

• The probability density function p(x) describes the likelihood of a given value of x. It
should satisfy:

- Normalization:
∫
dxp(x) = 1,

- Be non-negative: p(x) ≥ 0 for any x,
- Probability of x in [a,b]:

∫ b

a
dxp(x)

p(x;λ) =
1

λ
e−x/λ p(x;µ, σ) =

1

σ
√
2π

e−(x−µ)2/(2σ2)

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

6
Radiation transport calculations with the Monte Carlo method

One can estimate physical observables by sampling an ensemble of particle
trajectories (random walk) according to given interaction cross sections:

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

7
The Boltzmann equation

The Boltzmann equation is a balance equation in phase space - at any phase space
point, the increment of particle density n=n(t, x, y, z, px, py, pz, . . .) in an infinitesimal
phase space volume is equal to the sum of all production terms minus the sum of all
destruction terms. Writing it for the angular flux Ψ = nv:

1

v

∂Ψ(x)

∂t
+ Ω⃗ · ∇Ψ(x) + ΣtΨ(x)− S(x) =

∫
Ω

∫
E
Ψ(x)ΣS(x

′ → x)dx′

where x represents all phase space coordinates r⃗, Ω⃗, E and t.

The term 1
v
∂Ψ(x)
∂t rep-

resents time-dependent change (decay), Ω⃗ · ∇Ψ(x) is translational movement (no
change in energy or direction), ΣtΨ(x) with Σt the total macroscopic cross section
represents absorption, S(x) are the particle sources and the double integral with ΣS

the macroscopic scattering cross section refers to scattering.

All particle transport calculations are explicit or implicit attempts to solve the Boltzmann
equation.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

8
The Boltzmann equation

The Boltzmann equation is a balance equation in phase space - at any phase space
point, the increment of particle density n=n(t, x, y, z, px, py, pz, . . .) in an infinitesimal
phase space volume is equal to the sum of all production terms minus the sum of all
destruction terms. Writing it for the angular flux Ψ = nv:

1

v

∂Ψ(x)

∂t
+ Ω⃗ · ∇Ψ(x) + ΣtΨ(x)− S(x) =

∫
Ω

∫
E
Ψ(x)ΣS(x

′ → x)dx′

where x represents all phase space coordinates r⃗, Ω⃗, E and t.The term 1
v
∂Ψ(x)
∂t rep-

resents time-dependent change (decay), Ω⃗ · ∇Ψ(x) is translational movement (no
change in energy or direction), ΣtΨ(x) with Σt the total macroscopic cross section
represents absorption, S(x) are the particle sources and the double integral with ΣS

the macroscopic scattering cross section refers to scattering.

All particle transport calculations are explicit or implicit attempts to solve the Boltzmann
equation.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

9
The Boltzmann equation

The Boltzmann equation is a balance equation in phase space - at any phase space
point, the increment of particle density n=n(t, x, y, z, px, py, pz, . . .) in an infinitesimal
phase space volume is equal to the sum of all production terms minus the sum of all
destruction terms. Writing it for the angular flux Ψ = nv:

1

v

∂Ψ(x)

∂t
+ Ω⃗ · ∇Ψ(x) + ΣtΨ(x)− S(x) =

∫
Ω

∫
E
Ψ(x)ΣS(x

′ → x)dx′

where x represents all phase space coordinates r⃗, Ω⃗, E and t.The term 1
v
∂Ψ(x)
∂t rep-

resents time-dependent change (decay), Ω⃗ · ∇Ψ(x) is translational movement (no
change in energy or direction), ΣtΨ(x) with Σt the total macroscopic cross section
represents absorption, S(x) are the particle sources and the double integral with ΣS

the macroscopic scattering cross section refers to scattering.

All particle transport calculations are explicit or implicit attempts to solve the Boltzmann
equation.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

10
Integration efficiency

• Traditional numerical integration methods (e.g., Simpson) converge to the true value as
N−1/n , where N = number of “points” (intervals) and n = number of dimensions
(integration variables).

• Monte Carlo converges as N−1/2 , regardless of the number of dimensions (integration
variables)

• Therefore:
■ n = 1: MC is not convenient
■ n = 2: MC is equivalent to traditional methods
■ n > 2: MC converges faster (and the more so the reater the dimensions!)

• With the integro-differential Boltzmann equation the dimensions are the 7 of phase
space, but we use the integral form: the dimensions are those of the largest number of
“collisions” per history

• Note that the term “collision” comes from low-energy neutron/photon transport theory.
Here it should be understood in the extended meaning of “interaction where the particle
changes its direction and/or energy, or produces new particles”

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

11
Mean of a distribution

Given a variable x distributed according to a normalized function f(x), the mean of
a function A(x) of this variable in interval [a, b] is given by

A =
∫ b
a A(x)f(x)dx

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

12
Mean of a distribution

Given a variable x distributed according to a normalized function f(x), the mean of
a function A(x) of this variable in interval [a, b] is given by

A =
∫ b
a A(x)f(x)dx

In n > 1 dimensions, given n variables x, y, . . ., distributed according to the
normalized functions f(x), g(y), . . ., the mean of a function A(x, y, ..) of the
variables over an n−dimensional domain is

A =
∫
x

∫
y . . . A(x, y, . . .)f(x)g(y) . . . dxdy . . .

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

13
Mean of a distribution

Given a variable x distributed according to a normalized function f(x), the mean of
a function A(x) of this variable in interval [a, b] is given by

A =
∫ b
a A(x)f(x)dx

In n > 1 dimensions, given n variables x, y, . . ., distributed according to the
normalized functions f(x), g(y), . . ., the mean of a function A(x, y, ..) of the
variables over an n−dimensional domain is

A =
∫
x

∫
y . . . A(x, y, . . .)f(x)g(y) . . . dxdy . . .

Often difficult to calculate. Instead, sample N values of A using probability
f(x)g(y) . . . and divide sum of sampled values by N :

SN =
∑N

1 A(x,y,...)
N

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

14
The Central Limit Theorem

For large values of N , the distribution of normalized sums SN of N independent
random variables identically distributed according to any distribution with mean A
and variance σ2

A ̸= ∞ tends to a normal distribution with mean A and variance
σ2
A/N :

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

15
The Central Limit Theorem

For large values of N , the distribution of normalized sums SN of N independent
random variables identically distributed according to any distribution with mean A
and variance σ2

A ̸= ∞ tends to a normal distribution with mean A and variance
σ2
A/N :

limN→∞ SN = limN→∞
∑N

1 A(x,y,...)
N = A

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

16
The Central Limit Theorem

For large values of N , the distribution of normalized sums SN of N independent
random variables identically distributed according to any distribution with mean A
and variance σ2

A ̸= ∞ tends to a normal distribution with mean A and variance
σ2
A/N :

limN→∞ SN = limN→∞
∑N

1 A(x,y,...)
N = A

limN→∞ Prob(SN) = 1√
(2π/N)σA

e
− (SN−A)2

2σ2
A

/N

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

17
The Central Limit Theorem

For large values of N , the distribution of normalized sums SN of N independent
random variables identically distributed according to any distribution with mean A
and variance σ2

A ̸= ∞ tends to a normal distribution with mean A and variance
σ2
A/N :

limN→∞ SN = limN→∞
∑N

1 A(x,y,...)
N = A

limN→∞ Prob(SN) = 1√
(2π/N)σA

e
− (SN−A)2

2σ2
A

/N

The accuracy of the Monte Carlo estimator depends therefore on the sample number
N :

σA ∝ 1/
√
N .

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

18
The Central limit theorem

In words:

Given any observable A, that can be expressed as
the result of a convolution of random processes, the

average value of A can be obtained by sampling
many values of A according to the probability

distributions of the random processes.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

19
The Central limit theorem - Example (1)

Probability distribution for a 6-sided die:

Value
1 2 3 4 5 6

P
ro

b
ab

ili
ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Probability is 1/6 each

A = 1
N

∑
Ai = 3.5, σA =

√
1

N−1

∑
(Ai −A)2 =

√
35
12

≃ 1.708.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

20
The Central limit theorem - Example (1)

Probability distribution for a 6-sided die:

Value
1 2 3 4 5 6

P
ro

b
ab

ili
ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Probability is 1/6 each

A = 1
N

∑
Ai = 3.5, σA =

√
1

N−1

∑
(Ai −A)2 =

√
35
12

≃ 1.708.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

21
The Central limit theorem - Example (1)

Probability distribution for a 6-sided die:

Value
1 2 3 4 5 6

P
ro

b
ab

ili
ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Probability is 1/6 each

A = 1
N

∑
Ai = 3.5, σA =

√
1

N−1

∑
(Ai −A)2 =

√
35
12

≃ 1.708.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

22
The Central limit theorem - Example (2)

Throwing a die 500 000 times:

Value
0 1 2 3 4 5 6 7

C
o

u
n

t

0

20

40

60

80

100

120

310× Mean value = 3.497 Std value = 1.709

Outcome gives flat distribution.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

23
The Central limit theorem - Example (2)

Throwing a die 500 000 times:

Value
0 1 2 3 4 5 6 7

C
o

u
n

t

0

20

40

60

80

100

120

310× Mean value = 3.497 Std value = 1.709

Outcome gives flat distribution.
Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

24
The Central limit theorem - Example (3)

Now we throw 2 dice 250 000 times, and plot the mean of the 2 throws:

1 2 3 4 5 6
Mean Value

0

5000

10000

15000

20000

25000

30000

35000

40000
C

o
u

n
t

Mean value = 3.497 = 1.207NStd value/

Distribution follows a normal distribution.
Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

25
The Central limit theorem - Example (3)

Now we throw 4 dice 125 000 times, and plot the mean of the 4 throws:

1 2 3 4 5 6
Mean Value

0

2000

4000

6000

8000

10000

12000

14000

C
o

u
n

t

Mean value = 3.497 = 0.853NStd value/

Distribution follows a normal distribution.
Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

26
Common assumptions in Monte Carlo transport codes

Most Monte Carlo transport codes are based on a number of assumptions, which may
limit their field of application.

- Materials and geometry are generally supposed to be static, homogeneous,
isotropic and amorphous

- Particle transport is handled as a Markovian process - the fate of a particle
depends only on its actual present properties, and not on previous events

- Particles do not interact with each other (not valid in extremely intense radiation
fields)

- Particles interact only with individual electrons, atoms, nuclei and molecules

- Material properties are not affected by particle reactions (not valid for burnup in
nuclear reactors)

Special care has also to be given to the energy thresholds for transport and production
of particles. The default settings may not be optimal for your problem.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

27
Monte Carlo method:

E. Fermi S. Ulam N. Metropolis J. von Neumann

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

28
Monte Carlo method:

1930s: Enrico Fermi uses a Monte Carlo method when studying neutron diffusion

E. Fermi S. Ulam N. Metropolis J. von Neumann

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

29
Monte Carlo method:

1930s: Enrico Fermi uses a Monte Carlo method when studying neutron diffusion

1946: S. Ulam, N. Metropolis and J. von Neumann develop the Monte Carlo method
(originally used to study neutron shielding)

E. Fermi S. Ulam N. Metropolis J. von Neumann

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

30
The Monte Carlo method

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

31
Random numbers

• The basic tool for all Monte Carlo integrations are random numbers, i.e. values of a
random variable following a given probability density.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

32
Random numbers

• The basic tool for all Monte Carlo integrations are random numbers, i.e. values of a
random variable following a given probability density.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

33
Random numbers

• The basic tool for all Monte Carlo integrations are random numbers, i.e. values of a
random variable following a given probability density.

• In real world: Random outcomes of physical processes (intrinsic randomness), e.g.
https://en.wikipedia.org/wiki/dev/random

• In computer world: Pseudo-random numbers. Pseudo-random numbers (PRN) are
sequences that follow the uniform distribution, constructed from deterministic algorithms
(PRN generators).

• The basic pdf is the uniform distribution: f(ξ) = 1 with 0 ≤ ξ < 1

• PRN generators start from one or several seeds to generate sequences.
• A pseudo-random process is easier to produce than a really random one, and has the

advantage that it can be reproduced exactly. using the same seed.
• PRN generators have a period, after which the sequence is identically repeated. Periods

> 106000 have been reached.
• FLUKA PRN generator is based on G. Marsaglia, W. W. Tsang, Stat. Prob. Letters 66

(2004) 183

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

https://en.wikipedia.org/wiki/dev/random
http://www.fluka.org

;

34
Random-number generator state in FLUKA output

Lines in *.out and *.err files starting with “NEXT SEEDS:” indicate the state of the PRN
generator:
NEXT SEEDS: 0 0 0 0 0 0 181CD 3039 0 0

1 999 999 6.4229965E-03 1.0000000E+30 0
NEXT SEEDS: 890B 0 0 0 0 0 181CD 3039 0 0

20 980 980 1.6699648E-02 1.0000000E+30 25

Initial seed is defined in RANDOMIZ card:

* Set the random number seed
RANDOMIZ 1.0 54217137.

Any number < 9.E8 can be given as initial
seed.
Vector of 97 seeds is stored in external
ran*-file for the next run.

Content of ran*-file:
FE01572 0 181CD 3039B6698493

43 3A09166163FE751A1
B36DF0A23FD65E24A534941A3FE5972C4A0DCE2C3FE8305D2138D4663FDC8F5C
BF26A7D33FE20377D42149263FDE1BF080B935783FC388E71D4557C13FED374A
B3ECDAF03FEA239C87D845903FA7FFCEEBC51ECD3FE99EC2F8692AB23FED9C0A
A3F6F063FE41B32167268B93FE722154C1044D73FE9843F52A6BE0D3FE55EA0

CCE98E483FC59F7F97DB2ECE3FED86D2C2CC113C3FD5B4EC F09DD2E3FE56EC1
5E51CCF03FEAB75D4C9BE3FC3FCB974FF346CD583FDD1867CC960A323FDA9F1E
43349D3C3FC0EB299FF7C77F3FE313CAE62255B23FDDCB3926B77B103FB307F3
E74AB9CA3FE0354970449B503FD106CDAE4852923FD91C67 86CCF8F3FE1285D
4B991C703FD9B6A8401F4D383FC14D40D61397443FE081D980BEFF303FDE170C
142D77203FE3543E18E137B73FEE20D79A4DCF4C3FCD259AEBA554603FDBA795
2F0E9A3F3FE50C4D26E552FE3FD55F20264749A33FE48B40C730B0403FC89C2C
72106F903FB633D21E77D9543FCD4471916C222D3FE8957DD3FCC8883FCFC38B
F024540A3FD990E02DA2AD083FC10EDB22ED59233FE077C07662438D3FE4733A
3456076D3FEE92604440A9043FD363DDFD2EE2C53FEE75FE426345AC3FD2BE03
BD2688E43FEA518BEF3D32833FED29DC41D941103FCFF7883E9C33EF3FEA4A1D
84AE4B363FD8C6B2EEAF0ACC3FD6D5A0D56FA8803FA1C3AF1798F35A3FDB873B
A20F200E3FE43159E2D3DD503FC667777DEBFFFB3FE91D3B338379BF3FEFD335
...

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

35
Sampling from a discrete distribution

Assume discrete random variable x which
can assume values x1,x2,x3 . . . with
(normalized) probabilities p1,p2,p3 . . .
(
∑

i pi = 1).

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

iP

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

36
Sampling from a discrete distribution

Assume discrete random variable x which
can assume values x1,x2,x3 . . . with
(normalized) probabilities p1,p2,p3 . . .
(
∑

i pi = 1).
Define cumulative probability distribution
Cj =

∑j
i=1 pi.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

iP

i P∑

1
y

2
y

3
y

4
y

5
y

6
y

7
y

8
y

9
y 10

y

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

37
Sampling from a discrete distribution

Assume discrete random variable x which
can assume values x1,x2,x3 . . . with
(normalized) probabilities p1,p2,p3 . . .
(
∑

i pi = 1).
Define cumulative probability distribution
Cj =

∑j
i=1 pi.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

iP

i P∑

1
y

2
y

3
y

4
y

5
y

6
y

7
y

8
y

9
y 10

y

Generate a uniform random number ξ from the interval [0,1).

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

38
Sampling from a discrete distribution

Assume discrete random variable x which
can assume values x1,x2,x3 . . . with
(normalized) probabilities p1,p2,p3 . . .
(
∑

i pi = 1).
Define cumulative probability distribution
Cj =

∑j
i=1 pi.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

iP

i P∑

1
y

2
y

3
y

4
y

5
y

6
y

7
y

8
y

9
y 10

y

Generate a uniform random number ξ from the interval [0,1).
Then find the ith y-interval such that yi−1 ≤ ξ < yi.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

39
Sampling from a discrete distribution

Assume discrete random variable x which
can assume values x1,x2,x3 . . . with
(normalized) probabilities p1,p2,p3 . . .
(
∑

i pi = 1).
Define cumulative probability distribution
Cj =

∑j
i=1 pi.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

iP

i P∑

1
y

2
y

3
y

4
y

5
y

6
y

7
y

8
y

9
y 10

y

Generate a uniform random number ξ from the interval [0,1).
Then find the ith y-interval such that yi−1 ≤ ξ < yi.

Select X = xi as your sampled value.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

40
Sampling from a continuous distribution

Assume continuous random variable x
with a probability distribution function
f(x).

Example: f(x) = e−x/λ

Distance [Interaction length]
0 0.5 1 1.5 2 2.5 3 3.5 4

P
ro

b
ab

ili
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(x)

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

41
Sampling from a continuous distribution

Assume continuous random variable x
with a probability distribution function
f(x).

Example: f(x) = e−x/λ

Integrate f(x) and normalize to 1 to get
normalized cumulative probability:

F (d) =
∫ d
0 e−x/λdx∫∞
0 e−x/λdx

= 1− e−d/λ

Distance [Interaction length]
0 0.5 1 1.5 2 2.5 3 3.5 4

P
ro

b
ab

ili
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(x)

F(x)

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

42
Sampling from a continuous distribution

Assume continuous random variable x
with a probability distribution function
f(x).

Example: f(x) = e−x/λ

Integrate f(x) and normalize to 1 to get
normalized cumulative probability:

F (d) =
∫ d
0 e−x/λdx∫∞
0 e−x/λdx

= 1− e−d/λ

Distance [Interaction length]
0 0.5 1 1.5 2 2.5 3 3.5 4

P
ro

b
ab

ili
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(x)

F(x)
ξ

Generate a uniform random number ξ from the interval [0,1).

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

43
Sampling from a continuous distribution

Assume continuous random variable x
with a probability distribution function
f(x).

Example: f(x) = e−x/λ

Integrate f(x) and normalize to 1 to get
normalized cumulative probability:

F (d) =
∫ d
0 e−x/λdx∫∞
0 e−x/λdx

= 1− e−d/λ

Distance [Interaction length]
0 0.5 1 1.5 2 2.5 3 3.5 4

P
ro

b
ab

ili
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(x)

F(x)
ξ

Generate a uniform random number ξ from the interval [0,1).

Get a sample of f(x) by finding the inverse value X = F−1(ξ)

d = −λln(1− ξ), e.g. if ξ is 0.745, we would get X = 1.37λ.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

44
Sampling using rejection technique

Sometimes distributions can’t be inverted
easily. Then if one finds a normalized
function g(x) such that f(x) ≤ Cg(x) for
all x ∈ [xmin,xmax], the distribution f(x)
can be sampled using the rejection
technique.

f(x) = 1 + x2 ; x ∈ [−1., 1.]

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

f(x)

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

45
Sampling using rejection technique

Sometimes distributions can’t be inverted
easily. Then if one finds a normalized
function g(x) such that f(x) ≤ Cg(x) for
all x ∈ [xmin,xmax], the distribution f(x)
can be sampled using the rejection
technique.

f(x) = 1 + x2 ; x ∈ [−1., 1.]

Cg(x) = 2.

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

f(x)

Cg(x)

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

46
Sampling using rejection technique

Sometimes distributions can’t be inverted
easily. Then if one finds a normalized
function g(x) such that f(x) ≤ Cg(x) for
all x ∈ [xmin,xmax], the distribution f(x)
can be sampled using the rejection
technique.

f(x) = 1 + x2 ; x ∈ [−1., 1.]

Cg(x) = 2.

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

f(x)

Cg(x)

Generate a uniform random number
ξ1 from the interval [0,1), and sample
X = −1+ 2ξ1 from it.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

47
Sampling using rejection technique

Sometimes distributions can’t be inverted
easily. Then if one finds a normalized
function g(x) such that f(x) ≤ Cg(x) for
all x ∈ [xmin,xmax], the distribution f(x)
can be sampled using the rejection
technique.

f(x) = 1 + x2 ; x ∈ [−1., 1.]

Cg(x) = 2.

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

f(x)

Cg(x)

Generate a uniform random number
ξ1 from the interval [0,1), and sample
X = −1+ 2ξ1 from it.

Using a second uniform random number ξ2 between [0,1), accept X if
ξ2Cg(X) < f(X). Otherwise, resample ξ1 and ξ2.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

48
Sampling using rejection technique

Sometimes distributions can’t be inverted
easily. Then if one finds a normalized
function g(x) such that f(x) ≤ Cg(x) for
all x ∈ [xmin,xmax], the distribution f(x)
can be sampled using the rejection
technique.

f(x) = 1 + x2 ; x ∈ [−1., 1.]

Cg(x) = 2.

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

f(x)

Cg(x)Cg(x)

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

Generate a uniform random number
ξ1 from the interval [0,1), and sample
X = −1+ 2ξ1 from it.

Using a second uniform random number ξ2 between [0,1), accept X if
ξ2Cg(X) < f(X). Otherwise, resample ξ1 and ξ2.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

49
Sampling using rejection technique

Sometimes distributions can’t be inverted
easily. Then if one finds a normalized
function g(x) such that f(x) ≤ Cg(x) for
all x ∈ [xmin,xmax], the distribution f(x)
can be sampled using the rejection
technique.

f(x) = 1 + x2 ; x ∈ [−1., 1.]

Cg(x) = 2.

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

f(x)

Cg(x)Cg(x)

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

Generate a uniform random number
ξ1 from the interval [0,1), and sample
X = −1+ 2ξ1 from it.

Using a second uniform random number ξ2 between [0,1), accept X if
ξ2Cg(X) < f(X). Otherwise, resample ξ1 and ξ2.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

50
Sampling using rejection technique

Sometimes distributions can’t be inverted
easily. Then if one finds a normalized
function g(x) such that f(x) ≤ Cg(x) for
all x ∈ [xmin,xmax], the distribution f(x)
can be sampled using the rejection
technique.

f(x) = 1 + x2 ; x ∈ [−1., 1.]

Cg(x) = 2.

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

f(x)

Cg(x)Cg(x)

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

Generate a uniform random number
ξ1 from the interval [0,1), and sample
X = −1+ 2ξ1 from it.

Using a second uniform random number ξ2 between [0,1), accept X if
ξ2Cg(X) < f(X). Otherwise, resample ξ1 and ξ2.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

51
Sampling using rejection technique

Sometimes distributions can’t be inverted
easily. Then if one finds a normalized
function g(x) such that f(x) ≤ Cg(x) for
all x ∈ [xmin,xmax], the distribution f(x)
can be sampled using the rejection
technique.

f(x) = 1 + x2 ; x ∈ [−1., 1.]

Cg(x) = 2.

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

f(x)

Cg(x)Cg(x)

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

Generate a uniform random number
ξ1 from the interval [0,1), and sample
X = −1+ 2ξ1 from it.

Using a second uniform random number ξ2 between [0,1), accept X if
ξ2Cg(X) < f(X). Otherwise, resample ξ1 and ξ2.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

52
Sampling using rejection technique

Sometimes distributions can’t be inverted
easily. Then if one finds a normalized
function g(x) such that f(x) ≤ Cg(x) for
all x ∈ [xmin,xmax], the distribution f(x)
can be sampled using the rejection
technique.

f(x) = 1 + x2 ; x ∈ [−1., 1.]

Cg(x) = 2.

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

f(x)

Cg(x)Cg(x)

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

Generate a uniform random number
ξ1 from the interval [0,1), and sample
X = −1+ 2ξ1 from it.

Using a second uniform random number ξ2 between [0,1), accept X if
ξ2Cg(X) < f(X). Otherwise, resample ξ1 and ξ2.

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

53
Sampling examples: Uniform circular beam profile

Sampling a uniform distributed circular beam profile with radius R:

Generate a uniform random number ξ from
the interval [0,1) and construct the quantity

r = R ·
√
(ξ)

Sample two more numbers ξ2 , ξ3 from the
interval [0,1). Use ξ2 to sample a
cosinus-value between 0 and 2π, and define a
variable SGN which is +1 if ξ3 > 0.5 and −1
otherwise.

COS = cos(2π · ξ2)
SIN =

√
1−COS2 · SGN

Convert back to X and Y :
X = r ·COS
Y = r · SIN

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300

310×

6− 4− 2− 0 2 4 6

6−
4−

2−
0

2
4

6

0

100

200

300

400

500

600

700

800

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

54
Sampling examples: Gaussian-distributed circular beam

Sampling a gaussian-distributed circular beam profile with width σ:

Generate a uniform random number ξ from
the interval [0,1) and construct the quantity

r = σ ·
√
−2ln(ξ)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

200

400

600

800

1000

1200

310×

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

55
Sampling examples: Gaussian-distributed circular beam

Sampling a gaussian-distributed circular beam profile with width σ:

Generate a uniform random number ξ from
the interval [0,1) and construct the quantity

r = σ ·
√
−2ln(ξ)

Sample two more numbers ξ2 , ξ3 from the
interval [0,1). Use ξ2 to sample a
cosinus-value between 0 and 2π, and define a
variable SGN which is +1 if ξ3 > 0.5 and −1
otherwise.

COS = cos(2π · ξ2)
SIN =

√
1−COS2 · SGN

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

200

400

600

800

1000

1200

310×

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

56
Sampling examples: Gaussian-distributed circular beam

Sampling a gaussian-distributed circular beam profile with width σ:

Generate a uniform random number ξ from
the interval [0,1) and construct the quantity

r = σ ·
√
−2ln(ξ)

Sample two more numbers ξ2 , ξ3 from the
interval [0,1). Use ξ2 to sample a
cosinus-value between 0 and 2π, and define a
variable SGN which is +1 if ξ3 > 0.5 and −1
otherwise.

COS = cos(2π · ξ2)
SIN =

√
1−COS2 · SGN

Convert back to X and Y :
X = r ·COS
Y = r · SIN

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

200

400

600

800

1000

1200

310×

4− 3− 2− 1− 0 1 2 3 4

4−
3−

2−
1−

0
1

2
3

4
0

5000

10000

15000

20000

25000

30000

35000

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

57
Sampling examples: Gaussian-distributed circular beam

Sampling a gaussian-distributed circular beam profile with width σ:

Generate a uniform random number ξ from
the interval [0,1) and construct the quantity

r = σ ·
√
−2ln(ξ)

Sample two more numbers ξ2 , ξ3 from the
interval [0,1). Use ξ2 to sample a
cosinus-value between 0 and 2π, and define a
variable SGN which is +1 if ξ3 > 0.5 and −1
otherwise.

COS = cos(2π · ξ2)
SIN =

√
1−COS2 · SGN

Convert back to X and Y :
X = r ·COS
Y = r · SIN

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

200

400

600

800

1000

1200

310×

4− 3− 2− 1− 0 1 2 3 4

4−

3−

2−

1−

0

1

2

3

4

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

58
Sampling examples: Gaussian-distributed elliptical beam

Sampling a gaussian-distributed elliptical beam profile with widths σ1, σ2:

Generate two uniform random numbers ξ1
and ξ2 from the interval [0,1) and construct
the quantities

GAUSS1 = sin(2π · ξ1) ·
√
−2ln(ξ2)

GAUSS2 = cos(2π · ξ1) ·
√

−2ln(ξ2)

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

59
Sampling examples: Gaussian-distributed elliptical beam

Sampling a gaussian-distributed elliptical beam profile with widths σ1, σ2:

Generate two uniform random numbers ξ1
and ξ2 from the interval [0,1) and construct
the quantities

GAUSS1 = sin(2π · ξ1) ·
√
−2ln(ξ2)

GAUSS2 = cos(2π · ξ1) ·
√

−2ln(ξ2)

X = σ1 ·GAUSS1

Y = σ2 ·GAUSS2

25−
20−

15−
10−

5−
0

5
10

15
20

25 25−
20−

15−
10−

5−
0

5
10

15
20

25

0
1000
2000
3000
4000
5000
6000
7000
8000

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

60
Sampling examples: Gaussian-distributed elliptical beam

Sampling a gaussian-distributed elliptical beam profile with widths σ1, σ2:

Generate two uniform random numbers ξ1
and ξ2 from the interval [0,1) and construct
the quantities

GAUSS1 = sin(2π · ξ1) ·
√
−2ln(ξ2)

GAUSS2 = cos(2π · ξ1) ·
√

−2ln(ξ2)

X = σ1 ·GAUSS1

Y = σ2 ·GAUSS2

There are very efficient methods to sample
two independent normal-distributed numbers,
e.g. the FLNRR2(RGAUSS1,RGAUSS2)-function
in FLUKA).

25−
20−

15−
10−

5−
0

5
10

15
20

25 25−
20−

15−
10−

5−
0

5
10

15
20

25

0
1000
2000
3000
4000
5000
6000
7000
8000

25− 20− 15− 10− 5− 0 5 10 15 20 25
25−

20−

15−

10−

5−

0

5

10

15

20

25

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

61
Sampling examples: Isotropic emission

Sampling isotropic directions in 3D:

We need to sample the angles θ and ϕ. The
angle ϕ can be sampled by chosing uniformly

from the interval [0, 1π):

ϕ = 2π · ξ1

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

62
Sampling examples: Isotropic emission

Sampling isotropic directions in 3D:

We need to sample the angles θ and ϕ. The
angle ϕ can be sampled by chosing uniformly

from the interval [0, 1π):

ϕ = 2π · ξ1
For the angle θ, we need to sample cosθ

uniformly in the interval [−1, 1):

cosθ = 2ξ2 − 1

Construct the normalized cosine projections of
the direction vector:

X = sinθcosϕ
Y = sinθsinϕ

Z = cosθ

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

;

63
Sampling examples: Isotropic emission

Sampling isotropic directions in 3D:

We need to sample the angles θ and ϕ. The
angle ϕ can be sampled by chosing uniformly

from the interval [0, 1π):

ϕ = 2π · ξ1
For the angle θ, we need to sample cosθ

uniformly in the interval [−1, 1):

cosθ = 2ξ2 − 1

Construct the normalized cosine projections of
the direction vector:

X = sinθcosϕ
Y = sinθsinϕ

Z = cosθ

0.8− 0.6− 0.4− 0.2− 0 0.20.40.60.8

0.8−0.6−0.4−0.2−00.20.40.60.8

0.8−
0.6−
0.4−
0.2−

0
0.2
0.4
0.6
0.8

Fundamentals of Monte Carlo simulations with FLUKA www.fluka.org

http://www.fluka.org

www.fluka.org

;

http://www.fluka.org

