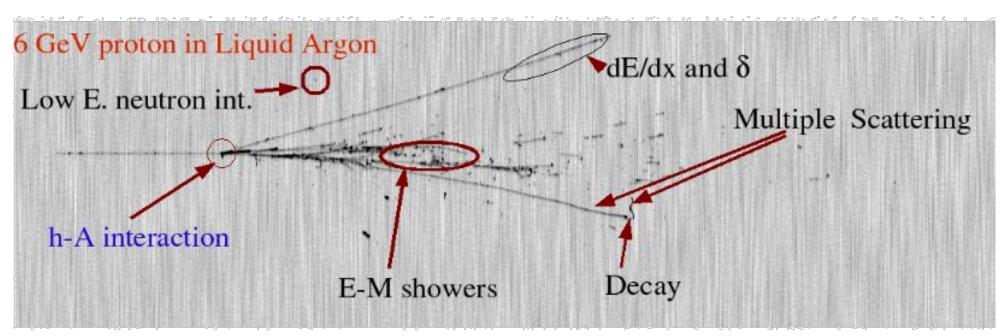


1909

An Introduction to Fluka: a Multipurpose Particle Interaction and Transport MC code

FLUKA


23rd FLUKA Beginner's Course Lanzhou University Lanzhou, China June 2-7, 2024

Main authors: Alberto Fassò, Alfredo Ferrari, Johannes Ranft, Paola R. Sala

Current contributing authors: G.Aricò, K.Batkov, G. Battistoni, R.dos Santos Augusto, Anna Ferrari, M. Lantz, A. Mairani, M.C.Morone, S.Müller, S.Muraro, V. Patera, M.Santana-Leitner

Developed and maintained by the FLUKA Collaboration

>10000 registered users

http://www.fluka.org

The FLUKA International Collaboration

Alfredo Ferrari, R.Engel KIT Karlsruhe, Germany P.R.Sala, retired, Italy G. Battistoni, M. Campanella, I. Mattei, S. Muraro, INFN. Milano, Italy N. Mazziotta INFN Bari, Italy M.C. Morone Univ. Roma II, Italy, N.Belcari, M.G. Bisogni, A. Kraan, V. Rosso INFN Pisa F. Ballarini, M. Carante, R. Luis Ramos INFN & Univ. Pavia, Italy, L. Sarchiapone INFN Legnaro, Italy A. De Gregorio, G. Franciosini, V. Patera, INFN Frascati & Univ. Roma I, Italy G. Magro, CNAO Pavia, Italy E. Fiorina, F. Pennazio, INFN Torino

> P.V. Degtiarenko, Lorenzo Zana, JLab, USA M. Santana Leitner, SLAC, Stanford, USA L. Pinsky, Univ. of Houston, USA R. Dos Santos Augusto, BNL, Brookhaven, USA

G. Dedes, J. Lascaud, K. Parodi, LMU Munich, Germany A. Mairani, T. Tessonier, HIT, Heidelberg, Germany, Anna Ferrari, S. Mueller, R. Rachamin, HZDR Rossendorf, Germany T.J. Dahle, L. Fjera, A. Rorvik, K. Ytre-Hauge, Bergen Univ., Norway S. Rollet, AIT, Austria (retired) Giorgi Kharashvili, Brugg Switzerland P.G. Ortega, Universidad de Salamanca, Spain, K.Batkov, MAX IV Laboratory, Lund, Sweden P. De la Torre Lugue, Oskar Klein Centre, Stockholm, Sweden, M. Lantz, Uppsala Univ., Sweden

Zhiyi Liu, Juntao Liu, Daiyuan Chen, Shan Jiang, Yiwei Wang, Xuyang Dong, Wenxin Li, Lanzhou University, China

A. Fassò, SLAC, Stanford, USA (retired)

A. Fedynitch, Academia Sinica, Taiwan

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

- > FLUKA^{1,2} is a general purpose tool for calculations of particle transport and interactions with matter
- > All Hadrons (p, n, π , K,pbar, nbar, (anti)hyperons...) [0-100 EeV, 10²⁰ eV]
- \blacktriangleright Electromagnetic ($\gamma,\,e^{+/\text{-}})$ and μ and ν
- Nucleus-nucleus
- Low energy neutrons
- Transport in electric and magnetic field
- Combinatorial (boolean) and Voxel geometries
- > Double capability to run either fully analogue and/or biased calculations
- On-line evolution of induced radioactivity and dose
- Radiation damage predictions (NIEL, DPA)
- User-friendly GUI interface thanks to the Flair³ interface

³ V. Vlachoudis, Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York, 2009

 ¹ F. Ballarini et al, "FLUKA: status and perspectives"
 NEA (2024), SATIF 15 - Sessions 2 & 3: Code Status, Advances, & Model Converters,
 OECD Publishing, Paris , page 89
 ²A. Ferrari et al., "FLUKA: a multiparticle transport code",
 CERN 2005-10 (2005), INFN/TC_05/11,
 SLAC-R-773

http://www.fluka.org

(0-20 MeV, multigroup, pointwise, ENDF...)

[0-100 EeV/n]

Particles transported by FLUKA:

Description	Deces	0 1 1	2	a l l DDa l	Er mz ·	FLUZ	Cumb al	Comment		Standard PDG
Fluka	Fluka	Symbol	Common name	Standard PDG number	FLUKA		Symbol	Common na	ame	
name	number			(Particle Data Group) [142]	name	number				(Particle Data
4-HELIUM ⁽¹⁾	-6	α	Alpha		Reserved	30				
3-HELIUM ⁽¹⁾	-5	$^{3}\mathrm{He}$	Helium 3		ASIGMA-	31	$\overline{\Sigma}^{-}$	Antisigma-minus		-3222
TRITON $^{(1)}$	-4	^{3}H	Triton		ASIGMAZE	32	$\overline{\Sigma}^{0}$	Antisigma-zero		-3212
DEUTERON ⁽¹⁾	-3	^{2}H	Deuteron		ASIGMA+	33	$\bar{\Sigma}^+$	Antisigma-plus		-3112
HEAVYION (1)	-2		Generic Heavy Ion with $Z > 2$ (see command HI–PROPE)		XSIZERO	34	Ξ^0	Xi-zero		3322
OPTIPHOT	-1		Optical Photon		AXSIZERO	35	Ξ^0	Antixi-zero		-3322
RAY (2)	0		Pseudoparticle		XSI-	36	$\bar{\Xi}^-$	Negative Xi		3312
PROTON	1	р	Proton	2212	AXSI+	37	Ξ+	Positive Xi		-3312
APROTON	2	$\bar{\mathbf{p}}$	Antiproton	-2212	OMEGA-	38	Ω^{-}	Omega-minus		3334
ELECTRON	3	e	Electron	11	AOMEGA+	39	Ω^+	Antiomega		-3334
POSITRON	4	e^+	Positron	-11	Reserved	40				
NEUTRIE	5	ν_e	Electron Neutrino	12	TAU+	41	τ^+	Positive Tau		-15
ANEUTRIE	6	$\bar{\nu}_e$	Electron Antineutrino	-12	TAU-	42	τ^{-}	Negative Tau		15
PHOTON	7	γ	Photon	22	NEUTRIT	43	ν_{τ}	Tau Neutrino		16
NEUTRON	8	n	Neutron	2112	ANEUTRIT	44	$\bar{\nu}_{\tau}$	Tau Antineutrino		-16
ANEUTRON	9	n	Antineutron	-2112	D+	45	D^+	D-plus		411
MUON+	10	μ^+	Positive Muon	-13	D-	46	D ⁻	D-minus		-411
MUON-	11	μ_{0}	Negative Muon	13	D0	40	D^0	D-zero		421
KAONLONG	12	K_L^0	Kaon-zero long	130	DOBAR	47	\bar{D}^0	AntiD-zero		-421
PION+	13	π^+	Positive Pion	211						
PION-	14	π^{-}	Negative Pion	-211	DS+	49	D_s^+	D_s -plus		431
KAON+	15	K^+	Positive Kaon	321	DS-	50	D_s^-	D_s -minus		-431
KAON-	16	K-	Negative Kaon	-321	LAMBDAC+	51	Λ_c^+	$Lambda_c$ -plus		4122
LAMBDA	17	Λ	Lambda	3122	XSIC+	52	Ξ_c^+ Ξ_c^0	Xi _c -plus		4232
ALAMBDA	18	Λ 120	Antilambda	-3122	XSIC0	53	Ξ_c^0	Xi _c -zero		4132
KAONSHRT	19	K_S^0	Kaon-zero short	310	XSIPC+	54	$\Xi_c^{\prime +}$ $\Xi_c^{\prime 0}$	Xi'_c -plus		4322
SIGMA-	20	Σ^{-}	Negative Sigma	3112	XSIPC0	55	$\Xi_c^{\prime 0}$	Xi_c -zero		4312
SIGMA+	21	$\frac{\Sigma^+}{\Sigma^0}$	Positive Sigma	3222	OMEGACO	56	Ω_c^0	$Omega_c$ -zero		4332
SIGMAZER	22	π^0	Sigma-zero Pion-zero	3212	ALAMBDC-	57	$\bar{\Lambda}_{c}^{-}$	$Antilambda_c$ -minus		-4122
PIZERO KAONZERO	23 24	${}^{\pi}_{ m K^0}$	r ion-zero Kaon-zero	111 311	AXSIC-	58	$\bar{\Xi}_c^0$	$AntiXi_c$ -minus		-4232
AKAONZER	24 25	\bar{K}^0	Antikaon-zero	-311	AXSICO	59	$\overline{\Xi}_{c}^{0}$	$AntiXi_c$ -zero		-4132
Reserved	25 26	K	Antikaon-zero	-311	AXSIPC-	60	$\Xi_c^{\prime-}$	AntiXi ['] _c -minus		-4322
NEUTRIM			Muon Neutrino	14	AXSIPCO	61	$\Xi_c^{\prime 0}$	$AntiXi'_c$ -zero		-4312
ANEUTRIM	27 28	ν_{μ}	Muon Neutrino Muon Antineutrino	-14	AOMEGACO	62	$\overline{\overline{\Omega}}_{c}^{0}$	Anti $Omega_c$ -zero		-4332
Blank	28 29	$\bar{\nu}_{\mu}$	muon Anneutino	-1-1	Reserved	63				
Dianth	29			table continues	Reserved	64				
				tuble continues	110501000	51				

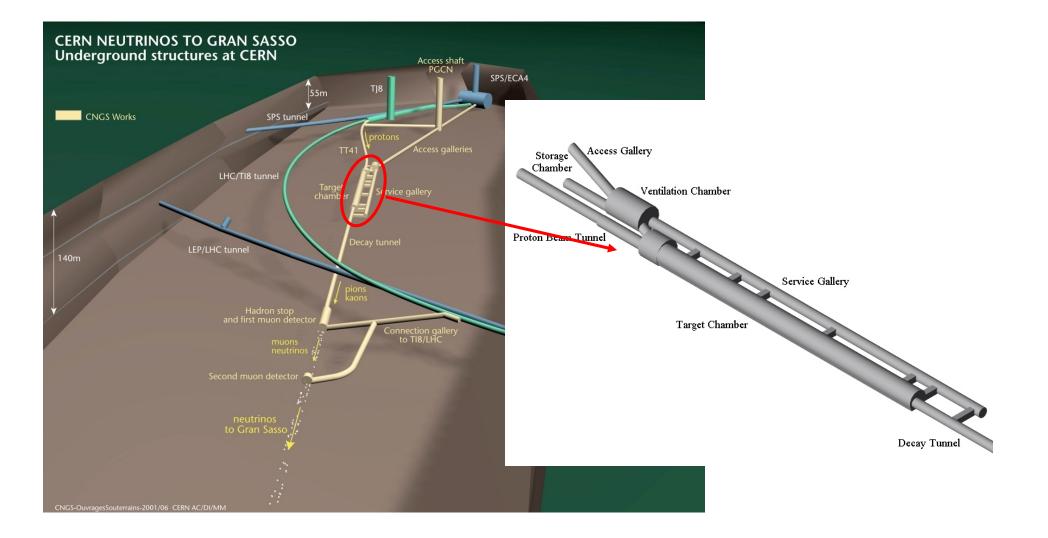
The FLUKA Code design

Based, as far as possible, on **original** and well-tested microscopic models

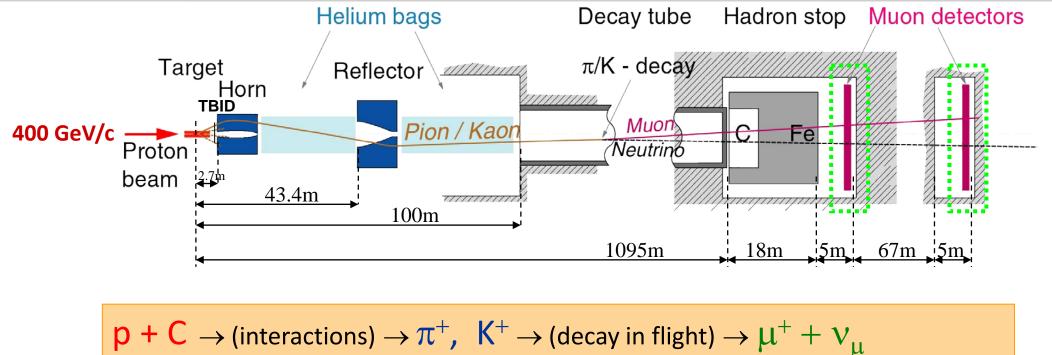
- **Full cross-talk** between all components:
 - hadronic,
 - electromagnetic,
 - ➤ neutrons,
 - ≻ muons,
 - heavy ions
- It is a "condensed history" MC code, however with the possibility to use single instead of multiple Coulomb scattering
 - FLUKA is NOT a toolkit! Its physical models are fully integrated
 - The user does not need to choose a "physics list"
 - > The user has, however, the possibility to optimize CPU vs accuracy
- Fluka provides powerful built-in scoring, tested and suited for most applications
 - > The user does not need to write external code to get results and statistics

What can be done with FLUKA?

http://www.fluka.org

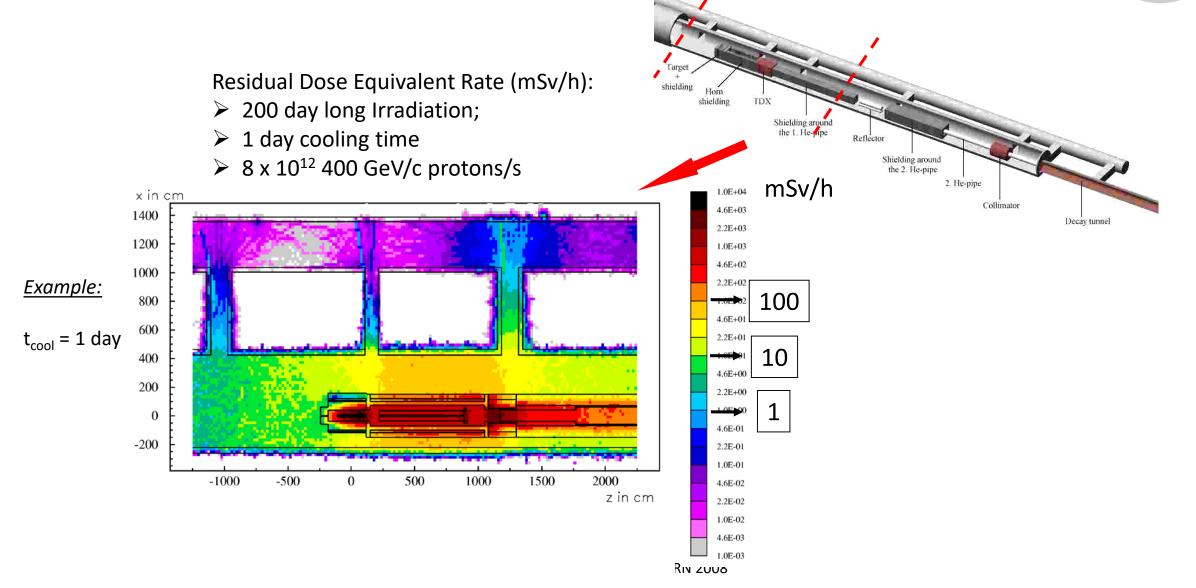

Accelerators:

- Neutrino experiments
- Detector simulation
- □ Shielding, residual dose rates
- Energy deposition (quenching and damage)
- Radiation damage (electronics, insulation)
- Activation, waste disposal
- Shielding design
- Spallation sources
- Secondary beams



Accelerator applications - CNGS neutrino beam

CNGS: v beam and muon monitors



Flight path to Gran Sasso : 732 km.

CNGS neutrino beam line designed and optimized with **FLUKA** Muon monitors: a check of neutrino production

Applications - CNGS

Pion and Kaon production data (v beams...)

107

10⁶

10⁵

10⁴

 10^{3}

 10^{2}

10¹

 10^{-2}

10⁻³

Phase space of

interest_form

10⁻¹CNGS_{0.050}

0.0

16384

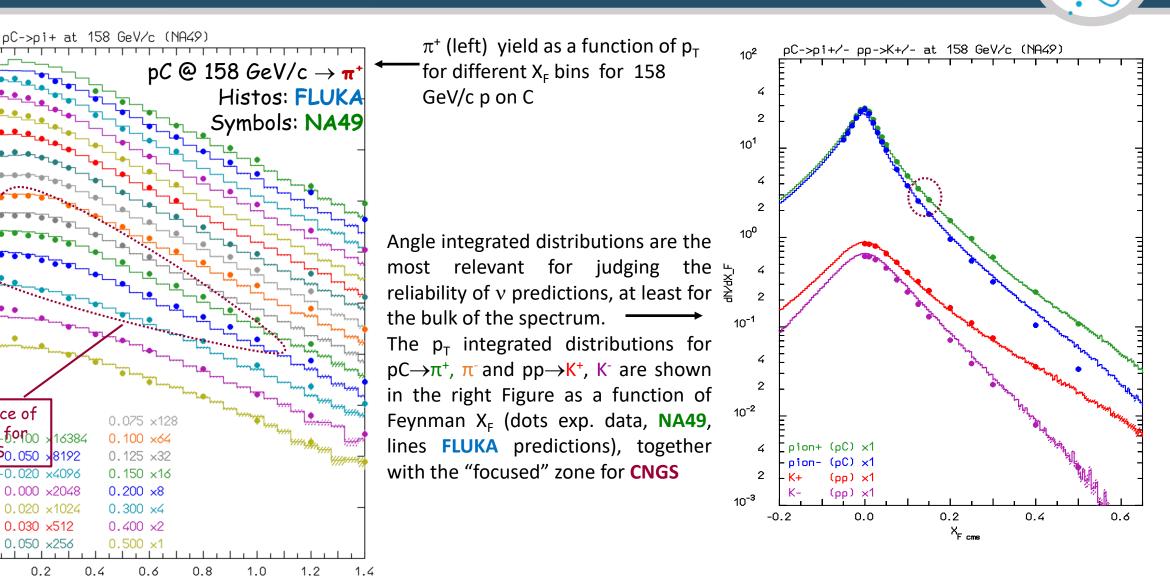
0.4

ρ_τ (GeV/c)

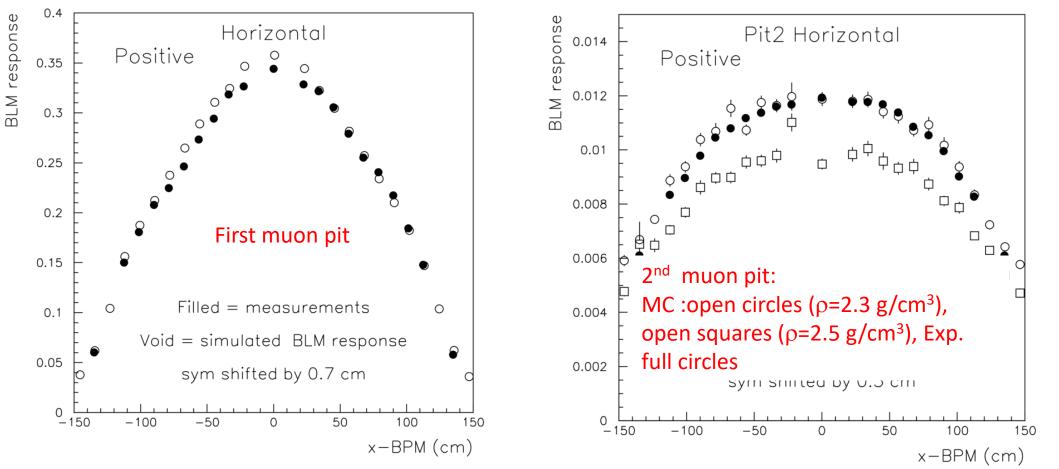
×8192

-0.020 ×4096

0.000 ×2048


0.020 ×1024

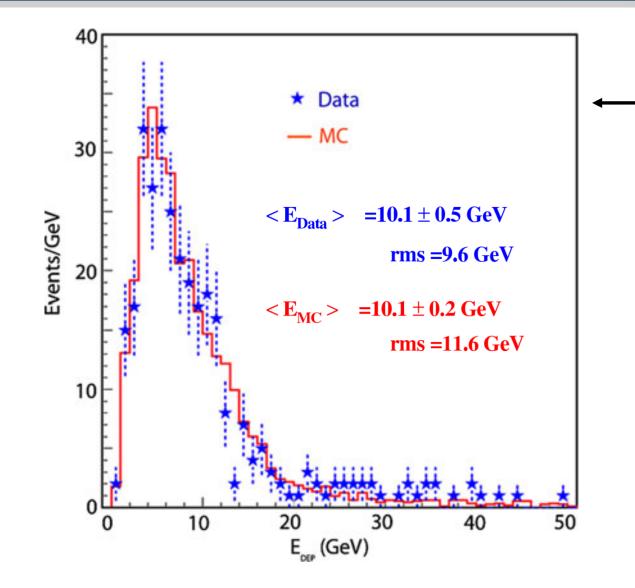
0.030 ×512


0.050 x256

0.2

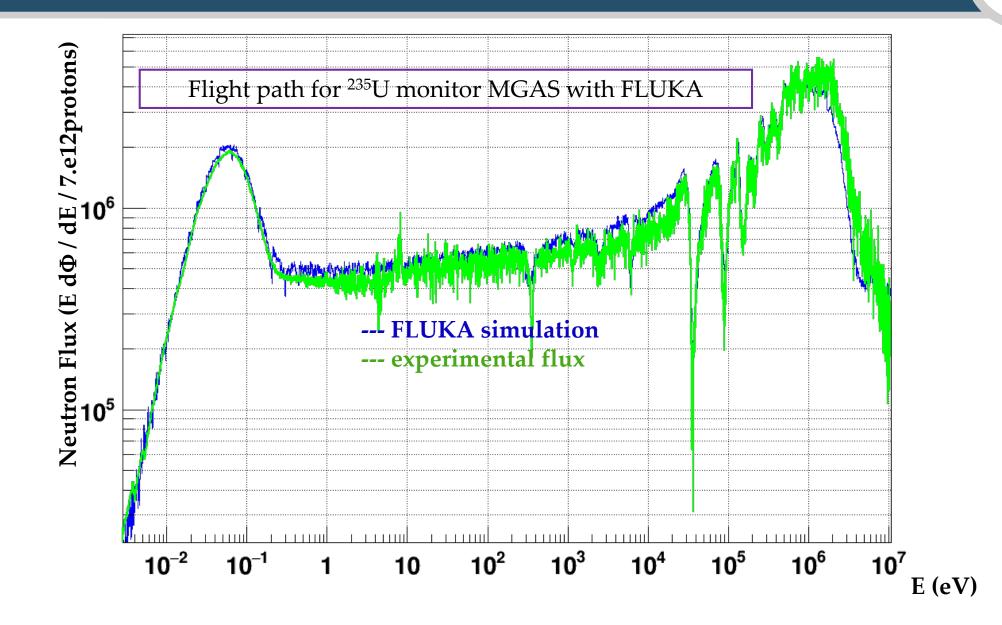
mb/(GeV²/c³

CNGS Muon pits (~110 m underground): data vs MC



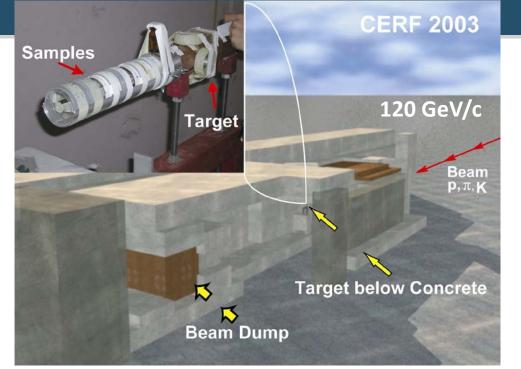
Absolute comparison! Included in MC: effect of **earth magnetic field** (in the 1 km long decay tunnel). Experimental uncertainties: detector calibration, density of the rock in between the two pits (67 m)

ICARUS: CNGS data



Distribution of total deposited energy in the ICARUS T600 detector

- CNGS numuCC events (~20 GeV E_v peak)
- Same reconstruction in MC (FLUKA) and Data
- Neutrino fluxes from FLUKA CNGS simulations
- Absolute agreement on neutrino rate within 6%

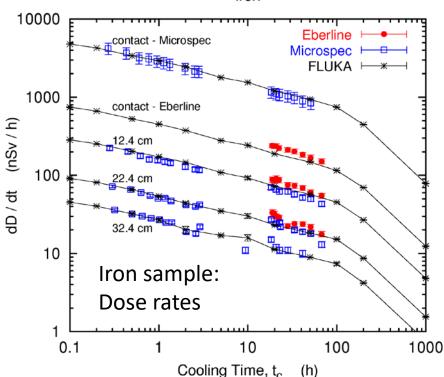

Eur. Phys. J. C (2013) 73:2345 Phys. Lett. B (2014)

Spallation source n_TOF @ CERN: EAR2

NTOF

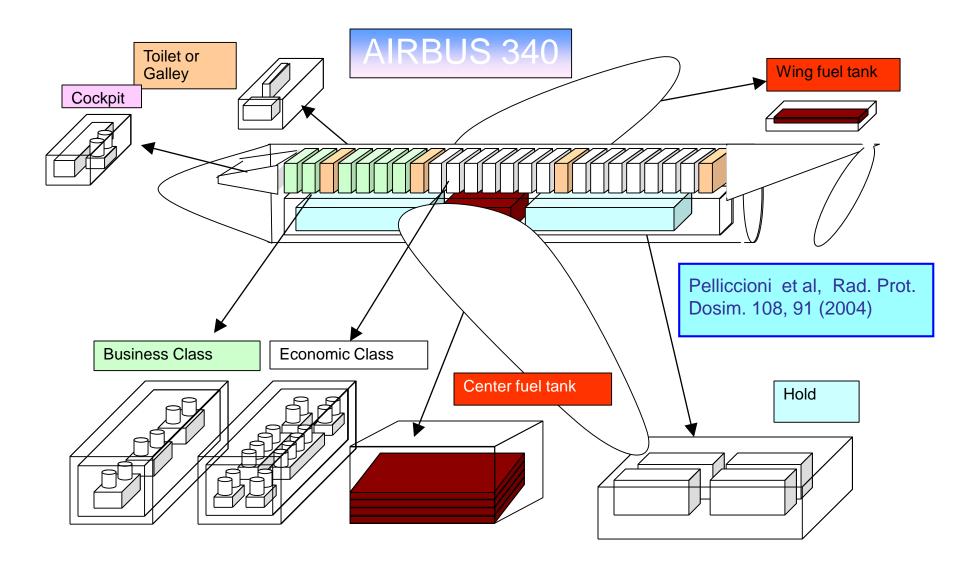
CERN-EU High-Energy Reference Field facility (CERF)

ACTIVATION of various

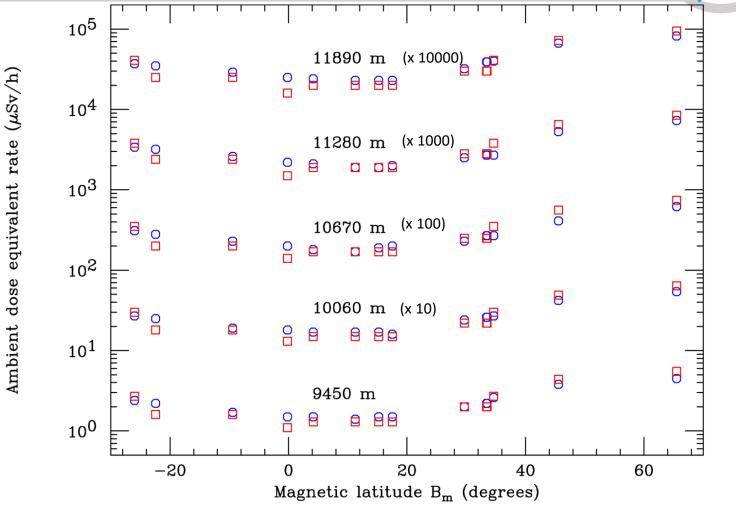

samples in contact with a 50 cm long, 7 cm diameter copper target, centred on the beam axis, and irradiated with a 120 GeV/c beam

Microspec

Thermo-Eberline dose-meter FHZ 672

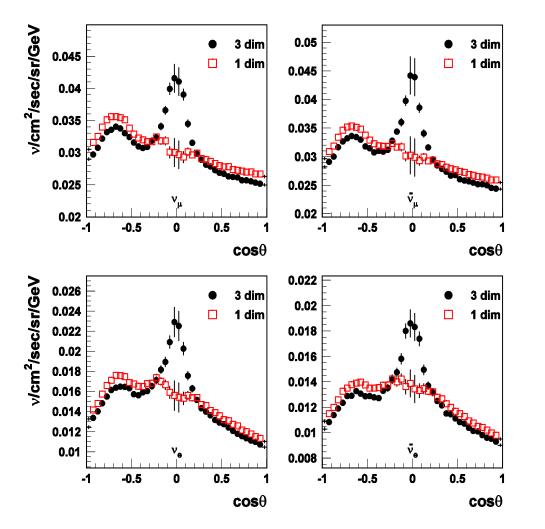


Dosimetry applications: doses to aircrew and passengers


Commercial flight doses: (Pelliccioni et al. RPD93)

Complete FLUKA simulation of cosmic rays interactions in the atmosphere

- Dedicated "cosmic" package available to users
- Ready to use GCR spectra and geomagnetic cut-offs


Model of airplane geometry Response of dosimeters

Dose to aircrew on commercial flights , depending on route

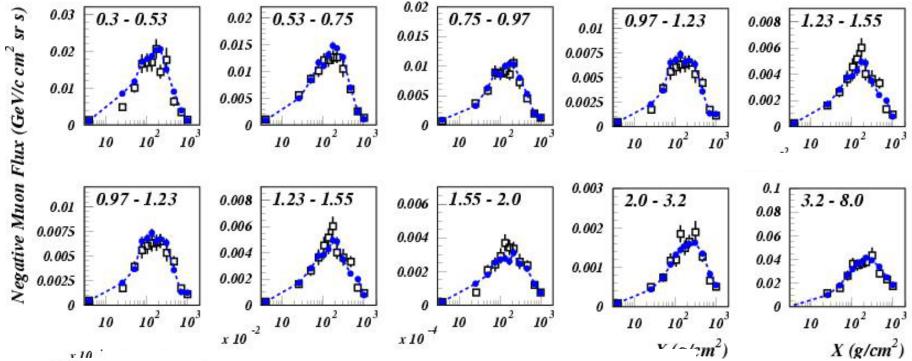
Simulated (FLUKA, red) and measured (blue, NIMA422, 621, 1999) ambient dose equivalent for various altitudes (scaled by one decade) and geomagnetic cut-off's

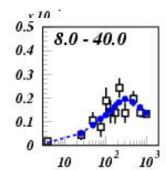
(3D) Calculation of Atmospheric n Flux

Sub-GeV flux at Kamioka

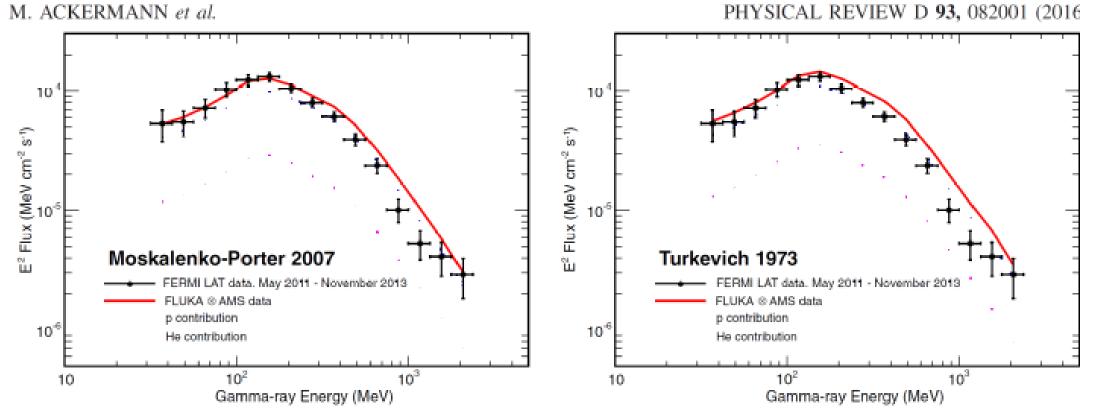
The first 3-D calculation of atmospheric neutrinos was done with FLUKA.

The enhancement in the horizontal direction, which cannot be predicted by a 1-D calculation, was fully unexpected, but is now generally acknowledged.


In the figure: angular distribution of v_{μ} , $\overline{v}_{\mu_{\mu}}v_{e}$, \overline{v}_{e}


In red: 1-D calculation

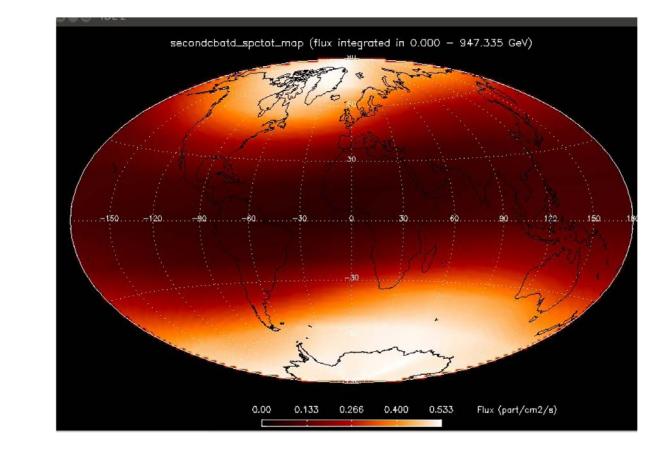
COSMIC RAYS: Negative muons at floating altitudes: CAPRICE94



Open symbols: CAPRICE data (for various momentum bins as a function of atmospheric depth) **Full symbols**: FLUKA

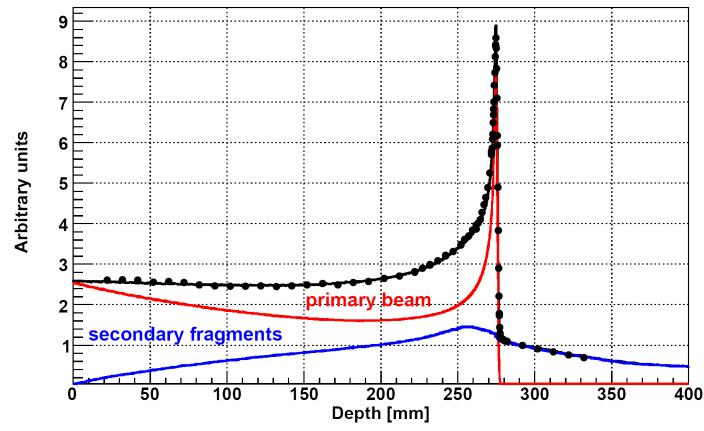
primary spectrum normalization ~AMS-BESS Astropart. Phys., Vol. 17, No. 4 (2002) p. 477

Gamma rays from GCR interactions with the moon:



Gamma-ray flux from the Moon in the period May 2011 –November 2013, measured (**FERMI-LAT**) and computed (**FLUKA**) for two different Lunar surface composition models (courtesy of M.Mazziotta, INFN Bari). Primary CR spectra from AMS-02

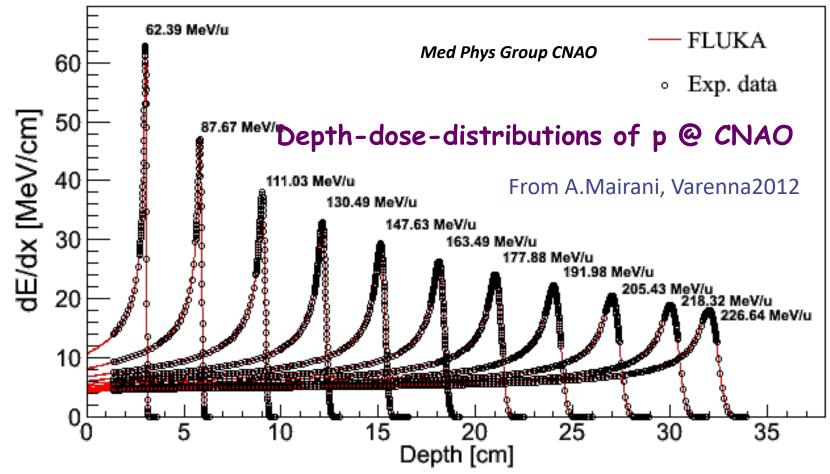
The neutron albedo from GCR's at 400 km altitude*



*In collaboration with CEA-Saclay

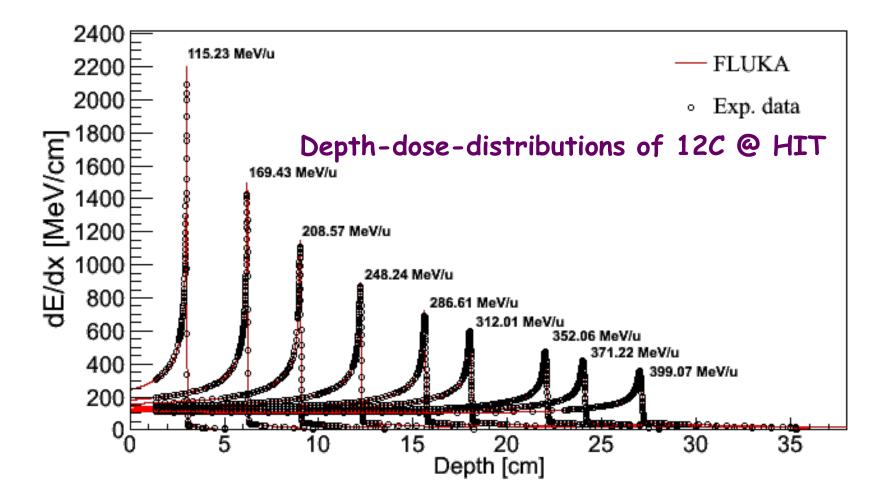
Medical physics : Radiotherapy

Bragg peak in a water phantom: 400 MeV/A C beam: The importance of fragmentation

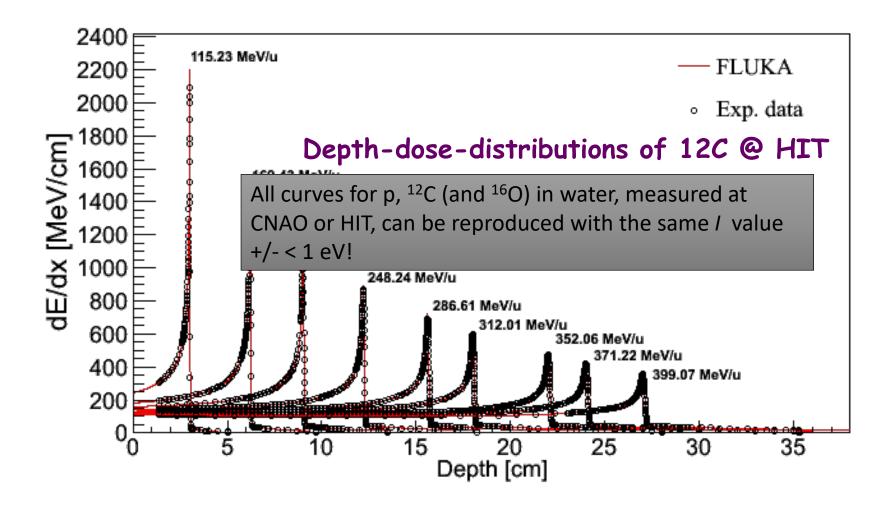


Exp. Data (points) from Haettner et al, Rad. Prot. Dos. 2006 Simulation: A. Mairani PhD Thesis, 2007, Nuovo Cimento C, 31, 2008

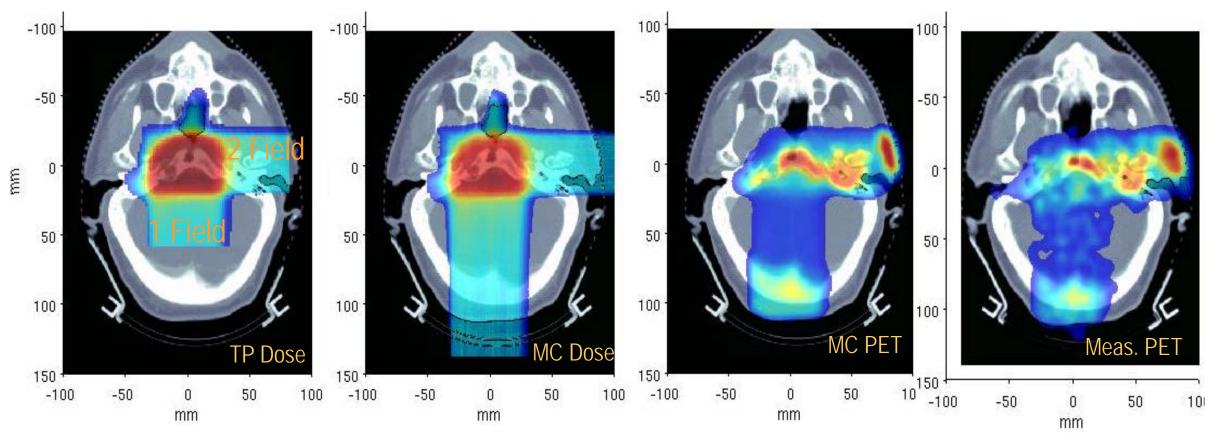
Fluka vs hadrontherapy, present: HIT, CNAO, ...

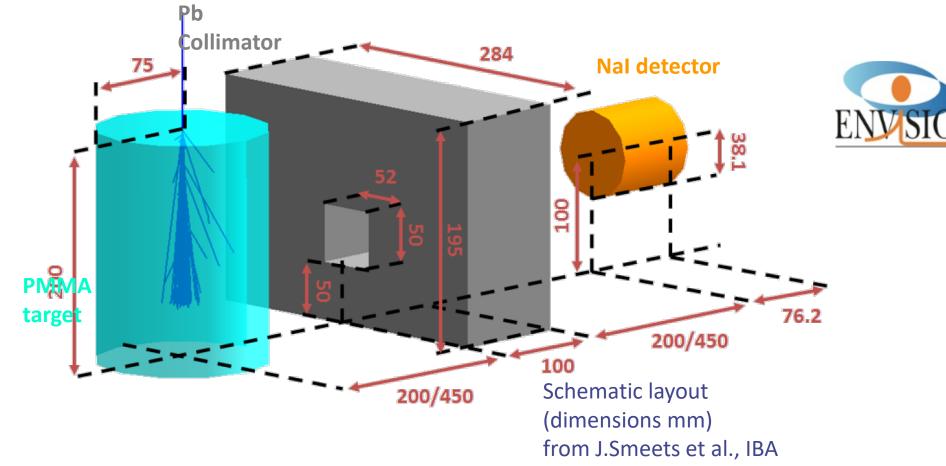


Used for generating p, ¹²C dose vs depth databases then used for TP

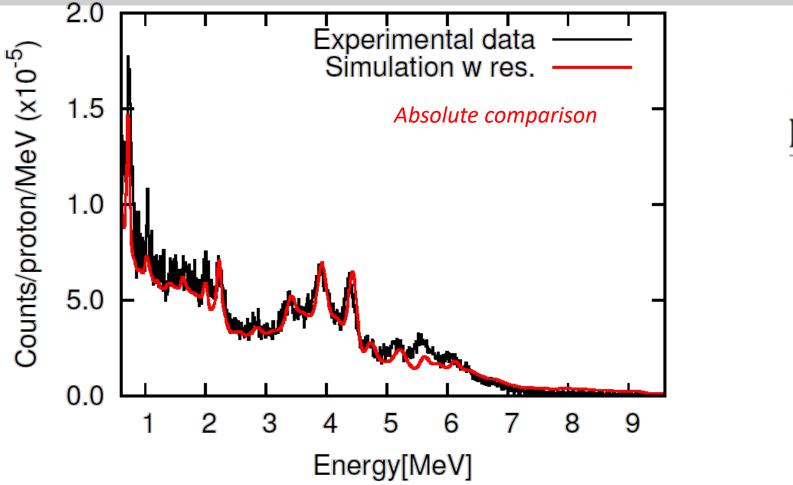

in water wo/with RiFi for the 147 energies in the initial phase of the operation

Fluka vs hadrontherapy, present: HIT, CNAO, ...


Fluka vs hadrontherapy, present: HIT, CNAO, ...



Clival Chordoma, 0.96 GyE / field, $\Delta T_1 \sim 26 \text{ min}$, $\Delta T_2 \sim 16 \text{ min}$


K. Parodi et al., PMB52, 3369 (2007)

Photon yields by 160 MeV p in PMMA

Photon yields by 160 MeV p in PMMA

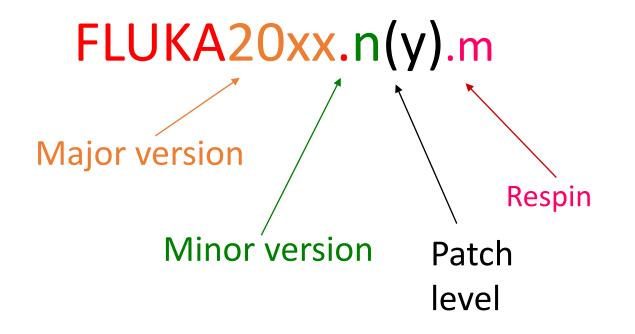
Energy spectrum of "photons" after background subtraction (collimator open – collimator closed) for 160 MeV p on PMMA. FLUKA **red line**, data **black line** (J.Smeets et al., IBA, ENVISION WP3)

The FLUKA Course: purpose

This course is intended to provide users with the basic

(and possibly more than basic!) knowledge of:

- a) The most relevant FLUKA instructions and options
- b) The physics models adopted in FLUKA
- c) The different scoring options embedded in FLUKA
- d) The different running options
- e) The tools to plot results
- f) The right approach to the existing documentation
- g) The procedures to overcome difficulties and problems and related debugging tools
- h) etc. etc.


Possible problems:

- People here are not all at the same level of FLUKA knowledge. There are those who already have some experience.
- However we need to start from scratch.
- We apologize to the experienced people and beg them to be patient: it's not excluded a priori that they can learn something new also concerning the very basic elements!
- FLUKA is written in fortran. No knowledge of fortran or other languages is needed in this course, however some of the terminology used might be derived from fortran. If this happens and it causes problems, please ask!
- FLUKA runs in a Linux/Mac OSX environment. A basic knowledge of most common Linux/Unix commands is required, as well as the capability to use a text editor (emacs, vi, gedit..). If some of you has troubles with this, please tell us

The FLUKA version

In this course we are using: FLUKA2024.1.0

The FLUKA license (it is not GPL):

Standard download: **binary library + user routines**.

- > FLUKA can be used freely for scientific and academic purposes,
 - (ad-hoc agreement for commercial purposes)
- It cannot be used for weapon related applications

□ It is possible, by explicit signing of license, to download the **source** for researchers of scientific/academic Institutions.

FLUKA can neither be copied into other codes (not even partially), nor translated into another language without permission

Generation For commercial use, trial version (limited in time and random seeds) available.

Please register on <u>www.fluka.org</u>and read the license!

• <u>fluka-users@fluka.org</u>

Users are automatically subscribed here when registering on the web site. It is used to communicate the availability of new versions, patches, etc.

• <u>fluka-discuss@fluka.org</u>

Users are encouraged to subscribe at registration time, but can uncheck the relevant box. It is used to have user-user and user-expert communication about problems, bugs, general inquiries about the code and its physics content

Users are strongly encouraged to keep this subscription

In the next months the FLUKA mailing lists will migrate to a web-based forum... keep in touch to be ready for the transition

Using FLUKA

Platform: Linux with gfortran (on 64 bit computers) and g77 (on 32 and 64 bit computers) Mac OSX (both Intel and Apple Silicon) with gfortran

The code should only be compiled/run using operating systems, compilers (and associated) options tested and approved by the development team

Standard Input:

- Command/options driven by "data cards" (ascii file) A powerful Graphical interface is available
- Standard Geometry ("Combinatorial geometry"): input by "data cards"

Standard Output and Scoring:

- Highly flexible and powerful, sufficient for most purposes
- Output processing and plotting interface available

Disclaimer

A good FLUKA user is **not** one that **only** masters technically the program

BUT a user that:

- Indeed masters technically the code;
- Know its limitations and capabilities;
- Can tune the simulation to the specific requirements and needs of the problem under study;
 - and most of all
- Has a critical judgment on the results
- □ Therefore in this course we will equally focus on:
 - The technical aspects of the code [building your input, geometry, scoring, biasing, extracting results...]
 - > as well as
 - The underlying physics and MC techniques

The course team

Anna Ferrari

Konstantin Batkov

Stefan Mueller

Alfredo Ferrari

Agenda: Monday

08:00

	Welcome	
	Lanzhou University, Lanzhou, China	08:30 - 08:40
	Introduction to FLUKA	
):00	This lecture	
	Lanzhou University, Lanzhou, China	08:40 - 09:30
	Statistics and sampling	
	MonteCarlo explained, and the	
0:00	importance of random numbers.	
	Lanzhou University, Lanzhou, China	09:30 - 10:30
	Coffee break	
	Lanzhou University, Lanzhou, China	10:30 - 11:00
:00	Installing and running	
	The very first step, do it together.	
	Learn how fluka runs and about output f	iles
	Lanzhou University, Lanzhou, China	11:00 - 12:00
2:00	FLUKA manual and basic input	
	Our first commands, and THE MANUAL!!	111
	Lanzhou University, Lanzhou, China	12:00 - 13:00
3:00	Lunch break	

Lanzhou University, Lanzhou, China	13:00 - 14:30
FLAIR	
Introduction to graphical interface, try it	
With US Lanzhou University, Lanzhou, China	14:30 - 15:30
Exercise: Compound materials	
First exercise, all by yourself	
Lanzhou University, Lanzhou, China	15:30 - 16:30
Coffee break	
Lanzhou University, Lanzhou, China	16:30 - 17:00
Exercise: Compound materials (continued)	
Please ask, we are here to help	
Lanzhou University, Lanzhou, China	17:00 - 18:00
	FLAIR Introduction to graphical interface, try it with us Lanzhou University, Lanzhou, China Exercise: Compound materials First exercise, all by yourself Lanzhou University, Lanzhou, China Coffee break Lanzhou University, Lanzhou, China Exercise: Compound materials (continued) Please ask, we are here to help

Agenda: Tuesday

	Geometry	
:00	Learn how to build a geometry in FLUKA	
	Lanzhou University, Lanzhou, China	08:30 - 10:00
00:00	Exercise: Geometry Apply what you learned	
	Lanzhou University, Lanzhou, China	10:00 - 10:30
	Coffee break	
	Lanzhou University, Lanzhou, China	10:30 - 11:00
1:00	Exercise. Geometry (continued)	
	Ask!!	
	Lanzhou University, Lanzhou, China	11:00 - 12:00
2:00	Physics models I: Hadronic interactions	
	Protons, neutrons, and other particles hit friends	5:
	see what comes out Lanzhou University, Lanzhou, China	12:00 - 13:00

13:00 Mount Wuquan visit, and Banquet

Agenda: Wednesday

08:00

	Scoring, and example	
	How to get results out of Fluka, and plot	
9:00	them, with examples	
	Lanzhou University, Lanzhou, China)8:30 - 09:30
	Low energy neutrons	
	Neutrons below 20 MeV: how to deal w	vith
:00	them	
	Lanzhou University, Lanzhou, China	9:30 - 10:30
	Coffee break	
	Lanzhou University, Lanzhou, China	10:30 - 11:00
:00	Exercise: Low energy neutrons	
:00	Apply what you learned about neutrons	5
	Lanzhou University, Lanzhou, China	11:00 - 13:00
:00	Lunch break	

14:00		
	Lanzhou University, Lanzhou, China	13:00 - 14:30
	Biasing	
	How to improve speed, and discover hidden	
15:00	results	
	Lanzhou University, Lanzhou, China	14:30 - 15:30
	Exercise: Biasing	
	Experience by yourself the power of biasi	ng
16:00		0
	Lanzhou University, Lanzhou, China	15:30 - 16:30
	Coffee break	
	Lanzhou University, Lanzhou, China	16:30 - 17:00
17:00	Exercise: Biasing (continued)	
17:00	Exercise: Biasing (continued) Neeed help? ASK!!!	

18:00

Agenda: Thursday

08:00

	Physics models II:EM interactions Learn how FLUKA deals with electrons	
09:00	and photons	
	Lanzhou University, Lanzhou, China	08:30 - 09:30
	Ionization and transport	
	Learn about charged particle transport,	
10:00	and how to optimize your simulation	
	Lanzhou University, Lanzhou, China	09:30 - 10:30
	Coffee break	
	Lanzhou University, Lanzhou, China	10:30 - 11:00
11:00	Exercise: Cutoffs Work with particle thresholds and more	
12:00	Lanzhou University, Lanzhou, China	11:00 - 13:00
13:00	Lunch break	

14:00		
	Lanzhou University, Lanzhou, China	13:00 - 14:30
	Heavy lons	
	How ion interact among themselves, and whi	ch
15:00	options you need	
	Lanzhou University, Lanzhou, China	14:30 - 15:30
	Medical applications I	
	Processes and input cards for medical	
16:00	applications	
	Lanzhou University, Lanzhou, China	15:30 - 16:30
	Coffee break	
	Lanzhou University, Lanzhou, China	16:30 - 17:00
17:00	Medical applications II	
	Guided application to a therapy-like exampl	е
	Lanzhou University, Lanzhou, China	17:00 - 18:00
19.00		

Agenda: Friday

	Radioactivity	
	How to calculate activation of material	s,
09:00	residual doses, inventory, time evolutio	0 N 08:30 - 09:30
	Exercise: Activation	
10:00	Apply	
	Lanzhou University, Lanzhou, China	09:30 - 10:30
	Coffee break	
	Lanzhou University, Lanzhou, China	10:30 - 11:00
11:00	Exercise: Activation (continued)	
	Lanzhou University, Lanzhou, China	11:00 - 12:00
12:00	Advanced topics What you can learn in the advanced	
	course	
	Lanzhou University, Lanzhou, China	12:00 - 13:00
.3:00	Lunch break	

14:00		
	Lanzhou University, Lanzhou, China	13:00 - 14:30
	Handling of errors and crashes	
15:00	Examples of common errors and their sol	ution
	Lanzhou University, Lanzhou, China	14:30 - 15:30
	User cases, Q&A	
16:00	Free discussion, bring your examples,	
	Lanzhou University, Lanzhou, China	15:30 - 16:30
	Coffee break	
	Lanzhou University, Lanzhou, China	16:30 - 17:00
17:00	User cases, Q&A	
	Doubts, And wishes	17:00 - 18:00
18:00	Closing	
	Lanzhou University, Lanzhou, China	18:00 - 18:10

- All the material for this course is available in the usb stick you received
 - Lectures : the presentations
 - Exercises: subdirectories with
 - Instruction
 - Input files
 - Flair files
- Solutions are also there, try not to look at them until the end of the dedicated time.
- Do NOT work on the usb: always create a new directory for each example/exercise

- Exercises will be on your own
- With a description to guide you
- And an input file to start with
- Teachers and support will be around, call us if you need help
- Also during lectures, if you have doubts please do not be shy, ask!

Thanks for your attention!