From Nuclei to Stars – a case in point:

Photoneutron Reaction Cross Section Measurements on ⁹⁴Mo and ⁹⁰Zr Relevant to the *p*-Process Nucleosynthesis

Adriana Banu

Schools on Nuclear Astrophysics Questions: What does nuclear physics do for astrophysics? June 9th, 2021

Erin O'Donnell (MSU/FRIB), <u>CC BY-ND</u>

A. Banu et al., Phys. Rev. C 99, 025802 (2019)

Collaborators:

Evan Meekins (undergraduate student)

James Madison University Department of Physics and Astronomy

Jack Silano & Hugon Karwowski

Triangle Universities Nuclear Laboratory (TUNL) University of North Carolina at Chapel Hill

Stéphane Goriely

Institut d'Astronomie et d'Astrophysique (IAA) Université Libre de Bruxelles

The p-process nucleosynthesis is responsible for the origin of 35 proton-rich stable nuclei heavier than iron!

The second s	ROTAL	and the second second		Abundances o	f the p-nuclei	(Atoms/10 ⁶ Si)
	p-nucleus	Abundance	p-nucleus	Abundance	p-nuclues	Abundance
	⁷⁴ Se	0.55	¹¹⁴ Sn	0.0252	¹⁵⁶ Dy	0.000221
	⁷⁸ Kr	0.153	¹¹⁵ Sn	0.0129	¹⁵⁸ Dy	0.000378
	⁸⁴ Sr	0.132	¹²⁰ Te	0.0043	¹⁶² Er	0.000351
	92	0.378	¹²⁴ Xe	0.00571	¹⁶⁴ Er	0.00404
THE REAL PROPERTY AND ADDRESS OF THE REAL PROPERTY ADDRESS OF THE R	⁹⁴ Mo	0.236	¹²⁶ Xe	0.00509	¹⁶⁸ Yb	0.000322
	Ru	0.103	¹³⁰ Ba	0.00476	¹⁷⁴ Hf	0.000249
	⁹⁸ Ru	0.035	¹³² Ba	0.00453	¹⁸⁰ Ta	2.48E-06
	¹⁰² Pd	0.0142	¹³⁰ La	0.000409	180 W	0.000173
	¹⁰⁸ Cd	0.0201	¹³⁰ Ce	0.00216	104 190	0.000122
THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	¹⁰⁰ Cd	0.875	¹³⁶ Ce	0.00284	¹⁹⁰ Pt	0.00017
	112 -	0.0079	152	0.008	Hg	0.00048
196	'' ⁻ Sn	0.0372	Gd	0.00066		
	Same.	E. And	ers, N. Grevess	e <mark>, Geoc</mark> him. Co	smochim. Acta	a 53, 197 (1989
			·H.	518 C		
		AT 20	2.8			
	-	12 A.				
	Contraction of	1020 -	- 1. C			

The *p*-Nuclei - 'nuclear astrophysics *p*-nuts'

The *p*-process nucleosynthesis

- $\tau \sim 1s \& T \sim 2-3 \ 10^9 K$
- Photodisintegration $(\gamma, n), (\gamma, p), (\gamma, \alpha)$
- Type-II & Ia Supernovae

M. Arnould & S. Goriely, Phys. Rep. 384, 1 (2003)

B²FH, Rev. Mod. Phys. 29, 547 (1957)

Why study ${}^{94}Mo(\gamma,n){}^{93}Mo \& {}^{90}Zr(\gamma,n){}^{89}Zr?$

The most abundant p-nuclei, ^{92,94}Mo and ^{96,98}Ru, are notoriously underproduced in the currently favored scenarios for the p-process, making their nucleosynthesis a longstanding mystery in nuclear astrophysics
10² group manufacture

C. Travaglio et al., ApJ 739, 93 (2011); C. Travaglio et al., ApJ 799, 54 (2015)

- ✓ "For the first time, we find a stellar source able to produce both light and heavy p-nuclei almost at the same level as ⁵⁶Fe, including the debated ^{92,94}Mo and ^{96,98}Ru."
- ✓ "[...], we estimate that SNe Ia can contribute to at least 50% of the solar p-process composition."
- Enhanced s-process seed distributions assumed!!!

- (only!) ⁹⁴Mo underproduced
- An important contribution from the *p*-process nucleosynthesis to the neutron magic nucleus ⁹⁰Zr (a genuine *s*-process nucleus)

p-Process Nucleosynthesis:

M. Arnould & S. Goriely, Phys. Rep. 384, 1 (2003)

Laboratory measurements are essential to improve the *accuracy and reliability* of stellar reaction rate theoretical predictions within Hauser-Feshbach statistical models:

Nuclear structure properties

- Nuclear level densities
- Optical model potentials

For more details see: http://www.tunl.duke.edu/higs/

γ-ray beam parameters	Values		
Energy	1 – 100 MeV		
Linear & circular polarization	> 95%		
Intensity with 5% AE,/E,	> 10 ⁷ γ/s		

Free electron laser process

http://www.tunl.duke.edu/web.tunl.2011a.howhigsworks.php

T. S. Carman et al., Nucl. Instr. and Meth. A 378, 1 (1996)

How HI_yS Works: Laser Compton Backscattering (LCB)

 $E_{electron} = 450 \text{ MeV} (\gamma = 882)$

 $E_{v} = 10 \text{ MeV}$

NewSUBARU (Japan); BL01 γ- ray beam usage ended on March 31, 2021

> VEGA @ ELI-NP (Romania); final stage of construction

Experimental Setup

$$\sigma(E_{\gamma}) = \frac{N_n}{N_{\gamma}N_t\varepsilon_n(E_{\gamma})}$$

- N_n number of neutrons detected using ³He counters
- N_{γ} number of incident photons
- N_t number of target atoms per unit area (enriched target)
- ε_n neutron detection efficiency

Neutron Detection Efficiency

C. W. Arnold et al., Nucl. Instr. and Meth. A 647, 55 (2011)

Neutron energy is lost by the **thermalization** of neutrons in the moderator (polyethylene)!!

Simulated efficiencies for neutron energies of interest:

~55% @ 20 keV - ~25% @ 4 MeV

$$E_{n0} = \left(\frac{A-1}{A}\right) \left(E_{\gamma} - S_n\right) \quad \text{(for g.s. neutrons)}$$

$$E_{ni} = \left(\frac{A-1}{A}\right) \left(E_{\gamma} - S_n - E_i\right)$$
 (for e

(for excited-state neutrons)

 $\varepsilon_{ni}(E_{ni})$ – neutron efficiency from Geant4 simulations

$$b_i$$
 – neutron branching from TALYS calculations

Effective neutron efficiency:

$$\epsilon_n^{\rm eff} = \sum_i b_i \epsilon_{n_i} (E_{n_i})$$

⁹⁰Zr(γ,n)⁸⁹Zr

E_{γ} (MeV)	E_i (MeV)	$J_i^{\pi_i}$	E_{n_i} (MeV)	l_i	ϵ_{n_i} (%)	b_i	$\epsilon_n^{\rm eff}$ (%)
12	0	9/2+	0.03	3(f wave)	52.89	1	52.89
12.1	0	$9/2^{+}$	0.13	3 (f wave)	52.15	1	52.15
12.2	0	$9/2^{+}$	0.23	3 (f wave)	51.53	1	51.53
12.4	0	$9/2^{+}$	0.43	3(f wave)	49.21	1	49.21
12.5	0	$9/2^{+}$	0.53	3(f wave)	47.69	1	47.69
12.8	0	$9/2^{+}$	0.82	3 (f wave)	44.18	0.17	49.94
	0.5878	$1/2^{-}$	0.24	0 (s wave)	51.12	0.83	
13	0	$9/2^{+}$	1.02	3(f wave)	41.33	0.23	46.94
	0.5878	$1/2^{-}$	0.44	0 (s wave)	48.61	0.77	
13.5	0	$9/2^{+}$	1.51	3(f wave)	36.71	0.26	42.97
	0.5878	$1/2^{-}$	0.93	0 (s wave)	42.68	0.45	
	1.0949	$3/2^{-}$	0.43	0 (s wave)	49.02	0.29	

A. Banu et al., Phys. Rev. C 99, 025802 (2019)

⁹⁰Zr(γ,n)⁸⁹Zr

E_{γ} (MeV)	$\sigma_{E_{\gamma}}$ (MeV)	$\sigma_{(\gamma,n)}$ (mb)	$\eta = \frac{\epsilon_{n_0}}{\epsilon_n^{\text{eff}}} = \frac{\sigma_{(\gamma,n)}}{\sigma_{(\gamma,n_0)}}$
11.75	0.21	0.01 ± 0.01	1
12	0.23	0.11 ± 0.01	1
12.1	0.21	0.14 ± 0.02	1
12.2	0.22	0.50 ± 0.03	1
12.4	0.22	2.28 ± 0.12	1
12.5	0.23	4.42 ± 0.24	1
12.8	0.23	9.67 ± 0.52	0.88 1 excited stat
13	0.22	12.66 ± 0.68	0.88 1 excited stat
13.5	0.24	20.94 ± 1.13	0.85 2 excited stat

E_{γ} (MeV)	$\sigma_{E_{\gamma}}$ (MeV)	$\sigma_{(\gamma,n)}$ (mb)	$\eta = \frac{\epsilon_{n_0}}{\epsilon_n^{\text{eff}}} = \frac{1}{2}$	$\frac{\sigma(\gamma,n)}{\sigma(\gamma,n_0)}$
9.5	0.18	0.28 ± 0.02	1	94
9.6	0.17	1.21 ± 0.07	1	
9.65	0.17	2.51 ± 0.14	1	
9.7	0.17	2.97 ± 0.16	1	
9.75	0.17	4.50 ± 0.24	1	
9.8	0.17	4.93 ± 0.27	1	
9.85	0.17	6.28 ± 0.34	1	
9.95	0.16	7.83 ± 0.42	1	
10	0.19	8.44 ± 0.46	1	
10.2	0.17	10.11 ± 0.55	1	
10.5	0.17	11.77 ± 0.63	1	
10.8	0.17	13.06 ± 0.70	0.89	1 excited state
11	0.17	14.53 ± 0.78	0.86	1 excited state
11.5	0.24	17.47 ± 0.94	0.80	3 excited states
11.65	0.25	18.73 ± 1.01	0.78	3 excited states
11.8	0.22	20.63 ± 1.11	0.79	3 excited states
11.95	0.23	22.61 ± 1.22	0.79	6 excited states
12.25	0.22	24.20 ± 1.30	0.71	8 excited states
12.5	0.23	27.86 ± 1.50	0.72	11 excited states
12.8	0.23	32.39 ± 1.74	0.74	14 excited states
13.5	0.24	48.64 ± 2.62	0.77	22 excited states

⁹⁴Mo(γ,n)⁹³Mo

⁹⁴Mo(γ,n)⁹³Mo

Messages to take away

- Accurate measurements of cross sections of photodisintegration reactions help constrain the *dipole* γ-ray strength function models necessary for calculating stellar photodisintegration reaction rates
 - ☆ These laboratory cross sections only determine a small fraction of the actual stellar reaction rate → they are not suited to directly constrain stellar photodisintegration reaction rates!
- Measured neutrons that are correlated with excited states in the residual nucleus must be appropriately accounted for when determining the detection efficiency needed to extract the laboratory photoneutron reaction cross sections
 - If only measured neutrons that are correlated with the ground state in the residual nucleus are considered, the detection efficiency can be underestimated → photoneutron reaction cross sections can be overestimated!

Acknowledgments

 This research is funded by the

 Research Corporation for Science

 Advancement – The Cottrell

 RESEARCH CORPORATION

 College Science Award

The theoretical work was performed within the IAEA CRP on "Updating the Photonuclear Data Library and Generating a Reference Database for Photon Strength Functions" (F41032)

S. Goriely *et al.*, Eur. Phys. J. A55, 172 (2019): *Reference Database for Photon Strength Functions* T. Kawano *et al.*, Nucl. Data Sheets 163, 109 (2020): *IAEA Photonuclear Data Library 2019*