NPA studies with direct methods using small accelerators A (*very* short and biased) overview

> György Gyürky Institute of Nuclear Research (ATOMKI) Debrecen, Hungary

> > ChETEC-INFRA SNAQs Schools on Nuclear Astrophysics Questions 9 June 2021

Outline

- Why direct methods?
 - Proton- and alpha-induced reactions in nuclear astrophysics
- Why small accelerators?
 - Relevant energy range
 - Beam requirements
- More about experimental needs
 - Targets
 - Detection
 - Background reduction

Why direct methods? Key quantity: astrophysical reaction rate

Mainly proton and alpha-induced reactions

Moreover: the Coulomb barrier

- ¹H + ²H: ~ 0.4 MeV
- ¹H + ¹²C: ~ 1.8 MeV
- ¹²C + ¹²C: ~ 8 MeV

- rate (10^8 K) : ~ 10^1
- rate (10⁸ K): ~ 10⁻⁵
- rate (10⁸ K): ~ 10⁻⁵⁰ [cm³/(mol·s)]

1 1

(Neutron and gamma-induced reactions are not discussed, see e.g. the talk of Adriana Banu later today)

Accelerators: requirements

The original sin of stars: low cross sections (fbarn-µbarn)

- High beam intensity (~ 100 μA)
- Long term availability and stability (weeks months)
- Automatic operation
- Precise energy calibration

Importance of accelerator energy calibration

Cross section from an experiment

The LUNA collaboration

- Italian-German-British-Polish-Hungarian collaboration
- Operates the only underground accelerator of the world at LNGS, Gran Sasso, Italy

Measurement of extremely low cross sections of astrophysical reactions

http://luna.lngs.infn.it/

Accelerator center of Atomki, Debrecen, Hungary

20 MeV cyclotron

2 MV Tandetron

Number of projectiles

- Charged particle induced reaction: charge measurement
- Required: good Faraday cup: complete charge collection, suppression of secondary electrons

Number of projectiles: gas target $N_r = N_p \cdot N_t \cdot \sigma$

 thin window gas cell: charge measurement possible (the cell is part of the Faraday cup)

Windowless gas target

Low energy: entrance window must be avoided

 N_r

= N

 Charge exchange in gas: charge measurement does not work

Windowless gas target

 calorimetric technique: determination of current from beam power

$$i_{beam}[\mu A] = \frac{p_{beam}[watt]}{E_{beam}[MeV]}$$

- good for high beam intensitiesusually must be calibrated
- using charge measurement in empty target

 N_{r}

Target thickness: requirements

- energy loss < typical cross section variation</p>
- \Rightarrow 10¹⁶-10¹⁸ atom/cm² ~ \Rightarrow ~ μ g/cm²
- homogeneity
- purity (background!)
- stability under bombardment

$$N_r = N_p N_t \sigma$$

Target thickness determination $N_r = N_p (N_t) \sigma$

- Off line (before or after the c.s. meas.):
 - weighing
 - energy loss
 - active (accelerator based) techniques
 - PIXE, RBS, NRRA, ...

- On line (during cross section measurement):
 Restauring
 - scattering
 - atomic and nuclear reactions
 - etc...

Proton-induced X-ray emission (PIXE)

- Absolute number of target atoms
- Target composition (stoichiometry) can be revealed
- Only for heavy elements (above Carbon)

Rutherford backscattering (RBS)

$$N_r = N_p N_t \sigma$$

Rutherford backscattering (RBS)

- Absolute number of target atoms
- Target composition (stoichiometry) can be revealed
- Not ideal for light target on heavy backing

$$N_r = N_p N_t \sigma$$

NRRA (Nuclear Resonant Reaction $\Gamma_1\Gamma_2$ Analysis) $(E - E_0)^2$ Narrow, isolated resonance needed σ_{max} Ideal case: Zero natural width Infinitely good beam energy $E_0 - \Gamma/2 \quad E_0 \quad E_0 + \Gamma/2$ resolution No energy straggling, homogenous target field

 $N_r =$

Projectile energy

NRRA An example

 $N_r = N_p$

 σ

Target thickness: (extended) gas target

 $N_r = N_p$

- pressure and temperature measurement
- no problem with target stability
- beam heating effect!

Controlling the target stability

- High intensity beam: target degradation may occur
- Target properties must be continuously controlled
- Can be done with several different methods:
 RBS
 - nuclear reaction with know cross section
 - Coulomb excitation
 - etc...

Target thickness and stability through RBS

 σ

Target thickness and stability with NRRA

¹³C(p,γ)¹⁴N

 $N_r = N_p$

 σ

Determination of the number of reactions

- Aim 1: high detection efficiency
- Aim 2: identification of reaction
- In-beam method
 - particle detection (alphas, protons, neutrons)
 - gamma detection
 - (recoil separator)
 - (storage ring)
- Off-line method: activation

$$N_{r} = N_{p} \cdot N_{t} \cdot \sigma$$

Charged particle detection (in beam)

- 100% intrinsic efficiency
- Solid angle to be determined
- Angular distribution effect

 $N_n \cdot N_t \cdot \sigma$

Charged particle detection (in beam)

- Background (e.g. elastic scattering) must be avoided
 - foil in front of detector
 - particle identification (ΔE-E detector)

 $N_{n} \cdot N_{t} \cdot \sigma$

 N_r $= N_p \cdot N_t \cdot \sigma$

LUNA ${}^{17}O(p,\alpha){}^{14}N$ measurement

 $=N_{p}\cdot N_{t}\cdot \sigma$ N_r

Gamma-detection (in-beam)

HPGe detectors

- Iow efficiency
- high resolution: detailed decay scheme

Scintillator summing crystals

- high efficiency
- Iow resolution
- only total cross section
- HPGe detector array
 - high efficiency, high resolution, coincidences
 - expensive, complicated

 $= N_{p} \cdot N_{t} \cdot \sigma$

Example: LUNA ${}^{14}N(p,\gamma){}^{15}O$, HPGe

Example: LUNA ${}^{14}N(p,\gamma){}^{15}O$, BGO

Off-line method: activation

- Its half-life must be suitable
- The decay must be measurable (gamma-radiation)

 N_r

 $= N_p \cdot N_t \cdot \sigma$

Activation: advantages

Detection

- Clean gamma-spectra
- Reduced beam-induced background
- No angular distribution effect
- More isotopes can be studied simultaneously
- Yields total cross section

Counts

Energy (keV)

How to reduce background? Shielding!

Passive shielding

Active shielding

Underground facility

Summary

- Direct methods are the best to obtain cross sections
- Stars are cool: small accelerators are enough
- Cross sections are low: special experimental techinque is needed
 - good beam
 - good targets
 - good detectors
 - Iow background

Thank you for your attention!