NDPA studies with direct methods

using small acce.

crators

A (very short anc

 biased) overview

Gyorgy Gydurky
Institute of Nuclear Research (ATOMKI)
Debrecen, Hungary

ChETEC-INFRA SNAQs
Schools on Nuclear Astrophysics Questions
9 June 2021



Outline

Why direct methods?

o Proton- and alpha-induced reactions in nuclear
astrophysics

Why small accelerators?

o Relevant energy range

o Beam requirements

More about experimental needs
o Targets

o Detection
o Background reduction



Why direct methods?
Key quantity: astrophysical reaction rate

< To be determined by us >
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‘ Mainly proton and alpha-induced
reactions

Still today...

other, heavier,
1.9%

Helium, 27.4%

abundance

Hydrogen, 70.7%



Moreover: the Coulomb barrier

IH +2H: ~ 0.4 MeV
IH +12C: ~ 1.8 MeV
12C + 12C: ~ 8 MeV
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rate (108
rate (108
rate (108

K): ~ 104
K): ~ 10
K): ~ 100
‘cm3/(mol-s)]

(Neutron and gamma-induced reactions are not discussed,
see e.g. the talk of Adriana Banu later today)
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Relative probability

‘ Why small accelerators

= 14N + p, ~ 15 MK,
= 12C +4He, =200 MK
= 144Sm + 4He, =3 GK

D II
20 - keV

230 — 400 keV
8 —12 MeV




' Accelerators: requirements

= High beam intensity (~ 100 pA)

= Long term availability and stability (weeks —
months)

= Automatic operation
= Precise energy calibration




CROSS SECTION o (nb}

‘ Importance of accelerator energy
calibration

Nonresonant reaction Resonant reaction
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Cross section from an experiment

Number of projectiles
“beam current”

Cross section

Target surface density
l.e. “target thickness”

Number of
reactions



‘ The LUNA collaboration

= ltalian-German-British-Polish-
Hungarian collaboration

= Operates the only underground
accelerator of the world at LNGS,
Gran Sasso, Italy

= Measurement of extremely low

cross sections of astrophysical

Laboratory for Underground reaCtionS 3 ;
Nuclear Astrophysics

http://luna.Ings.infn.it/



http://luna.lngs.infn.it/

‘ Accelerator center of

Atomki, Debrecen, Hungary
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Number of projectiles N, (NN, o

Charged particle induced reaction: charge
measurement

Required:‘good Faraday cup:\ complete charge
collection, suppresFion of secondary electrons

insulator collimator
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Number of projectiles: gas target

N, N, -o

thin window gas cell: charge measurement
possible (the cell is part of thg Faraday cup) |
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Windowless gas target Ao

Low energy: entrance window must be avoided

Charge exchange in gas: charge measurement
does not work
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: N N. -
‘ Windowless gas target Ao

= calorimetric technique: determination of current
from beam power '

ibeam [/wA‘] — pbeaml!: I\\//lvas:;

= good for high beam intensities
= usually must be calibrated
using charge measurement
In empty target
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Target thickness: requirements

energy loss < typical cross section variation
— 1016-101% atom/cm? ~ = ~ ug/cm?

homogeneity

purity (background!)

stability under bombardment

Nr=Np®G
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Target thickness determination N.=N,(N)o

Off line (before or after the c.s. meas.):
o weighing

o energy loss "4
o active (accelerator based) techniques '\ o
PIXE, RBS, NRRA, ... e

On line (during cross section measurement):
0 scattering

o atomic and nuclear reactions

o etc...
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Proton-induced X-ray emission (PIX

(L]
N—r

Absolute number of target atoms

Target composition (stoichiometry) can be
revealed

Only for heavy elements (above Carbon)
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‘Rutherford backscattering (RBS)

= Scattering = Energy loss
Kinematics s
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Rutherford backscattering (RBS)

Absolute number of target atoms

Target composition (stoichiometry) can be
revealed

Not ideal for light target on heavy backing



counts/channel

BaCO, target on thin Al foil

measured spectrum
best fit
————————— fit assuming BaO target
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NRRA (Nuclear Resonant Reaction

Analysis) . e
Narrow, isolated resonance (E — Eg)?—" /4
needed i
|deal case:

o Zero natural width

o Infinitely good beam energy
resolution

o No energy straggling,
homogenous target

EoT/2 Ey Eg+l/2

Yield

Projectile energy
N, =N, @ o 2



‘ NRRA An example =N

B Measured yield
"N(p,ey) *C o A
EE = 897 keV

Fit:
* Arctangent
 Error function

(5.69 = 0.40) - 107
“N atoms/cm®

Resonance yield [arb. units]

895 900 905 910 915
E, [keV]



Target thickness: (extended) gas target

N, =N, {N) o

pressure and temperature measurement
no problem with target stability
beam heating effect!
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Controlling the target stability

High intensity beam: target degradation may
occur

Target properties must be continuously
controlled

Can be done with several different methods:

o RBS

a nuclear reaction with know cross section
o Coulomb excitation

o etc.

Nr:Np®a 2



‘ Target thickness and stability through RBS
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Target thickness and stability with NRRA
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Determination of the number of reactions

Aim 1: high detection efficiency
Aim 2: identification of reaction

In-beam method

o particle detection (alphas, protons, neutrons)
o gamma detection

o (recoll separator)

o (storage ring)

Off-line method: activation

®:|\|p.|\|t.g 2



‘ Charged particle detection (in beam)

= 100% Intrinsic efficiency
= Solid angle to be determined
= Angular distribution effect

30



‘ Charged particle detection (in beam)

= Background (e.g. elastic scattering) must be
avoided
a foll in front of detector
o particle identification (AE-E detector)

e.g. a (p,a)
reaction

proton beam

®=Np-|\|t°0



LUNA YO(p,00)"*N measurement

detectors

:N .Nt.a 32



LUNA YO(p,0))"*N measurement
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‘ Gamma-detection (in-beam) @Z Np-N,-o

= HPGe detectors

o low efficiency
o high resolution: detailed decay scheme

= Scintillator summing crystals
o high efficiency
o low resolution
o only total cross section

= HPGe detector array
o high efficiency, high resolution, coincidences
o expensive, complicated




Example: LUNA “N(p,y)!*0, HPGe
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Example: LUNA “N(p,y) O, BGO
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= Natural Isotopes
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Off-line method: activation @Z Np-Ne-

Only If the reaction product is radioactive
Its half-life must be suitable
The decay must be measurable (gamma-radiation)

J_ _ f;'_’:ll'r irrad
A

"I‘Il'rhh'uf = Oreae - Na - Pp -

\

AT AT AL, —Al,
-"I'"{Eﬁmy — -"I'";Jmuf = (1 —¢ )

Mumber of alive radioactive nuclei

tin-..ﬂ: t..-.- t.: time 37



Detection Pt
Activation: advantages

Clean gamma-spectra
Reduced beam-induced background
No angular distribution effect

More Isotopes can be studied simultaneously
Yields total cross section

38
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. o ~N_-N,-
With activation @ O

84Sr(p,y)85Y 86Sr(p’y)87Y 87Sr(p,y)88Y




Importance of background reduction




How to reduce background? Shielding!

= Passive shielding

= Active shielding

= Underground facility

42



Let’'s go underground!
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Summary

Direct methods are the best to obtain cross
sections

Stars are cool: small accelerators are enough

Cross sections are low: special experimental
techinque Is needed

o good beam

o good targets

o good detectors

o low background
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