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1. Zebrafish as alternative model

2. High content screening of chemicals
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Toxicological 

endpoint
Type of observation Type of assessment

Observation stage 

(hpf)

Mortality Coagulation/necrosis

Visual

Focal Microscope

24 & 96 hpf

Motor behavior LMR – Locomotor activity

Automatic video tracking 

system

ZebraBox

(View Point)

96 hpf

Phenotype

Measurement of 96hpf 

ventral and dorsal structural 

features

Automated imaging platform

Automatic Imaging Robot 

(AIR) 

96 hpf

Heart frequency

Measurement of the heart 

frequency during 5-15 

seconds

Automated imaging platform

Automatic Imaging Robot 

(AIR)  

96 hpf

Studied toxicological endpoints

3. Assessment of model compounds to identify 

candidates for mixture assessment.
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• Zebrafish embryos (Danio rerio) offer an ethical alternative to standard

animal testing and align with the 3Rs principle.

• This research uses high-content screening to explore how complex

chemicals with diverse modes of action impact on effect patterns.

• Knowledge gained will strengthen the interpretation of environmental

sample data and advance effect-based monitoring.

Task 1: 

Artificial model mixtures

(known modes of action)

Task 2: 

Prototype environmental mixtures

(known composition)

Task 3: 

Environmental samples 

(Nigeria)

Nigeria case study 

(Agriculture, Oil, drought)

Global Network Impact

(One world initiative)

Background

Objectives

• Compounds from the PrecisionTox project were analyzed.

• Selection was based on Toxic Ratio (TR) and Sensitivity Ratio (SRbasline).

• Compounds with TR>20 and/or SR>10 with diverse MOA were prioritized 

for further mixture design.

Toxic Ratio(TR) assessment and selection of compounds

22 TR compounds

Compounds with similar dose response relationship used for: 

• Equitoxic mixture design 

• Mixture effect prediction

10 Compounds of high TR & diverse MOA 

• high TRs

• SR (multiple endpoints)

Sensitivity Ratio (SR) analysis for designing a mixture 

to study morphological effects

SR =10

10 Compounds 

with no LC50 

Next after identifying potential candidates from SRmortality assessment.

• Cumulative assessment to get slopes and design equitoxic mixture.

• Compare individual effect patterns with mixture

• Explore prediction possibilities

Total of 11 Compounds have been identified as potential  candidate for mixture design base on SR for morphological effects 

(SRmortality) assessment

Phase Key Task Tool/Metric Purpose

1 Artificial mixture design Fixed-ratio, MOA grouping
Reflect complex mixtures with contrasting 

MoAs

2 Mixture testing CA/IA Models, SR, MDR Compare predicted vs actual toxicity

3
Environmental sample 

analysis
LC-MS/MS, ZF-HCS, SR Assess real-world mixture effects

4 Data integration
SR, TR, endpoint 

prioritization
Guide risk assessment and regulation

The goal is to design 2 mixtures of several compounds based on

Toxic Ratio (TR): TR is defined as the ratio of the 

LC50 predicted from a QSAR for baseline 

toxicity and the experimental LC50 value.

TR =   LC50 predicted baseline toxicity

Observed toxicity (LC50)

SRmortality =  LC50

EC50
morph

Where:

- LC₅₀ = concentration causing 50% mortality

- EC₅₀morph = concentration causing 50% morphological effects

Next after identifying potential candidates from 

TR assessment?

• design initial TR mixtures for testing

• Concentration Addition (CA) and Independent 

Action (IA) models comparison

• evaluate applicability of mass balance model

4. Outlook

A total of 118 compounds 

was analysed
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❖Chemicals are essential to modern life; requires better testing models for safety.

❖Over 350,000 chemicals in commerce, only a fraction tested so far. 

❖Emergence of zebrafish embryo test (ZET) as NAMs alternative.
❖Need for ZET enhancement by additional morphological endpoints to:

▪ improve diagnostic capacity, for individual compounds and environmental mixtures.

▪ establish biomarkers for developmental delay -> required for using oxygen consumption as effect parameter

▪ capacity as potential endpoint for chemical effect assessment

2. Methodology:

Figure 1. (A) General procedure to acquire and annotate

embryos. (B) Additional feature analysis and annotation. (C)

Additional morphological markers established. (D)

Morphological assessment at various developmental stages to

obtain markers for developmental delay.

Figure 2. (A) Morphological images depicting developmental delay (72hpf) and controls (96hpf) incubated at 27.7 °C. (B) Dataset of a single

replicate with individual embryos analysed by PCA for reducing dimension – 72 hpf group is distinctly separated from the 96 hpf, whereas others

overlapped, potentially to variability greater than differences in many endpoints. (C) 48 metric features visualized as a heatmap (marked differences

mostly detected at 72 hpf). (D) Euclidean distance of the eye and otolith2 as a selected example, representing one of the key developmental stage

biomarkers.

i. Developmental Delay Marker – comparison of morphological descriptors at different developmental stages

3. Results:

B

Figure 3. Validation study with reduced incubation temperature. (A)

Heatmap showing all 48 features with particularly significant differences

between lowest (25.3 °C) and highest incubation temperature (27.7 °C)-

data were normalized by 27.7 °C temperature. (B) PCA plots of replicate

showing individual embryo variance with the lowest and highest temperature

separated. (C) Euclidean distance of the eye-otolith2 distance as example

for one replicate.

6. Search for chemicals with effects on developmental stages:

C

❖ Extended the morphological endpoints  of ZET with more structural features.

❖ Establishment of developmental delay biomarker signatures.

❖ Validation of the new model using low incubation temperatures.

❖ Identified 9 endpoints as developmental delay biomarkers

❖ Correlation between developmental delay and low temperature

❖ Identified chemicals causing developmental delay

4. Validation Experiment:

A

C

Figure 5. (A) 4-Methylimidazole images showing developmental delay indicated by comparison to different developmental stages. (B) 56

compounds elicited positive responses for at least one developmental delay biomarker (only a fraction is shown). 4-Methylimidazole affected all

biomarkers. (C) Dot plot of EC50 values of 4-methylimidazole effects for developmental delay biomarkers and morphological endpoints..

Optimization of ZET for Environmental 
Samples

(Incorporating More Endpoints)

Morphometric 
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Figure 4: (A) Nine consistently affected endpoints in both experiments were identified using regression model.
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Compact Multi-Channel  Oxygen 

Reader for 96-Well Microplates. 

Calculation of Developmental Delay Index

Determining oxygen consumptions by 
chemicals.

Chemical testing to ascertain their delay severity 
using delay signature

Application of optimized ZET model 
to environmental chemical sampling
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Prediction of prenatal developmental toxicity using the zebrafish 

embryo model - retinoic acid AOPs 

Chemical exposure

Gene knockdown

Transcriptomics analysis
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Introduction

• Retinoic acid (RA) regulates embryonic development (morphogenesis, organogenesis).

• Balance between RALDH (synthesis) and CYP26 (metabolism) is crucial.

• Hypothesis: Zebrafish embryos exposed to chemicals interfering with RA homeostasis, as well as 

CRISPR/Cas9 F0 crispants, will provide biomarkers that can be integrated into the adverse outcome 

pathway (AOP) framework to improve toxicity prediction.

Objectives

• Identification of model compounds.

• Quantitatively assess morphology caused by model compounds (RALDH & CYP26 inhibitors) exposure.

• Apply CRISPR/Cas knockdowns of aldh and cyp26 to build causal links between gene function and phenotypes.

• Characterize transcriptomic changes in exposed zebrafish and CRISPR/Cas9 F0 crispants.

Current Results

• DEAB (RALDH inhibitor) and Talarozole (CYP26 inhibitor) were identified as model compounds.

• Many phenotypes observed in chemical exposure are potentially related to RA disruption for example:

➢ Pectoral fin defects

➢ Caudal and ventral fin malformations

➢ Curved tail

➢ Cornea defects

➢ Craniofacial malformations 

Mouse study – limb defects[2]

Methods

Reference

1. Wiesinger, A., et al., Retinoic acid signaling in heart development: Application in the differentiation of cardiovascular lineages from human pluripotent stem cells. Stem Cell Reports, 2021. 

16(11): p. 2589-2606..

2. Cunningham, T.J. and G. Duester, Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nature Reviews Molecular Cell Biology, 2015. 16(2): p. 110-123.
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Source: Wiesinger et al., 2021

RetiNAM: 
IDENTIFICATION OF SENSITIVE BIOMARKERS FOR 
DISRUPTION OF THE RETINOIC ACID SIGNALING 

PATHWAY

 
The retinoic acid signaling pathway as a target of 
endocrine disruption has been of growing interest 
recently highlighting the need for validated assays. 
Current standardized test methods for endocrine 
disruption only focus on EATS (estrogen, androgen, 
thyroid, steroidogenesis) modalities, neglecting the 
retinoic acid pathway.

Laboratory experiments: 

Model organism: 
Zebrafish larvae

Model compounds:
Agonists and 
antagonists of RAR and 
RXR, environmentally 
relevant chemicals

Global evidence for RA pathway disruption in the environment: RA pathway disruption was observed by several classes of 
chemicals in several species.

RAR and RXR agonists and antagonists cause similar and specific effects on morphology: Exposure causes eye and 
craniofacial malformations, a bent tailtip and fin defects in zebrafish larvae.

RAR and RXR agonists and antagonists cause similar and specific effect during acute neuroactivity testing: Hyperactivity in 
quiescent endpoints, effects on habituation and memory, early decrease of 
motoractivity and decreased startle responses.

➢ Testing for developmental neurotoxicity using the VAMR assay

➢ Additional environmental and reference chemicals in the VAMR assay

➢ Concentration-dependent transcriptome analysis, 

➢ Data integration & pattern analysis
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Figure 1: Disruption of the retinoic acid signaling pathway induces morphological and behavioral changes in zebrafish embryos. A. Representative 

images showing morphological phenotypes in zebrafish embryos. Upper row: control embryo (0.1 % DMSO); lower row: embryos exposed to 

all-trans retinoic acid. B. Heatmap of visual and acoustic motor response assay (VAMR) endpoints showing SSMD values for each endpoint per chemical and concentration. Hierarchical clustering reveals distinct 

behavioral profiles.

A. B.
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