

High-Throughput Ecotoxicology (HITEC)

Nyffeler

Gender-neutral

<u>Niff</u>eler

Pronouns:

- they/them
- **-** Jo

Introduction: Dr. Jo Nyffeler

- PhD at University of Konstanz, Germany (2012-2017)
 - o group of Dr. Marcel Leist
 - development of high-content assays for in vitro developmental net

- PostDoc at Center for Computational Toxicology & Exposure (CCTE), US EPA (2017-2022)
 - o group of Dr. Joshua Harrill
 - high-throughput imaging-based profiling ('Cell Painting'), computational toxicology

Helmholtz Young Investigator Grant

- Goal: establish and lead my own research group
- ◆ 1.5 Mio € over 5 years
 - salaries
 - experiments
 - o travel, training, ...
- ◆ Jan 2023 Dec 2027
 - evaluation for tenure in spring 2026

High-Throughput Ecotoxicology

HiTEC

CALL FOR APPLICATIONS

as of December 1, 2021 for up to 9 Helmholtz Young Investigator Groups

funded by the Initiative and Networking Fund of the President of the Helmholtz Association

Too many chemicals - too little toxicity information

pubs.acs.org/e

Policy Analysis

Outside the Safe Operating Space of the Planetary Boundary for Novel Entities

Linn Persson,* Bethanie M. Carney Almroth, Christopher D. Collins, Sarah Cornell, Cynthia A. de Wit,* Miriam L. Diamond, Peter Fantke, Martin Hassellöv, Matthew MacLeod, Morten W. Ryberg, Peter Søgaard Jørgensen, Patricia Villarrubia-Gómez, Zhanyun Wang, and Michael Zwicky Hauschild

Cite This: Environ. Sci. Technol. 2022, 56, 1510–1521

>300.000 chemicals worldwide

Traditional test methods:

- Rely on animal experiments
- ◆ Time-consuming (1 year/chemical)
- ◆ Cost-intensive (1 Mio €/endpoint)

National Research Council 2007

New Approach Methods

Challenges in ecotoxicology

Typical test battery

Algae

www.eawag.ch

Invertebrate

www.hydrotox.de

Fish

www.tnaqua.org

Chemicals with data in ECOTOXdb:

	Number of	
Taxon	chemicals	
Fish	6833	
Crustaceans	3587	
Insects/Spiders	2968	
Mammals	2196	
Molluscs	1843	
Other Invertebrates	1797	
Worms	1510	
Birds	1490	
Amphibians	1168	
Reptiles	168	

Underrepresented taxa

Aim: Transform ecotoxicological hazard assessment

human-centric

Human osteosarcoma cells Adapted from Nyffeler *et al.* 2020

- image-based methods
- high-throughput

tested chemicals 7
represented species 7

Research Strategy

What is Imaging-Based Phenotypic Profiling?

Golgi + membrane

- labeling of various cell organelles with fluorescent probes in *in vitro* cultures
- assessing a large variety of morphological features on individual cells

'Cell Painting' assay Gustafsdottir et al. 2013 Bray et al. 2016

Flourescent labels **DNA**: H-33342 RNA: SYTO14 ER: Concanavalin A-488 Actin: Phalloidin-568 Golgi + Membrane: wheat germ agglutinin (WGA) -555 Mitochondria: MitoTracker

Nyffeler et al. 2020

Cell Painting = Phenotypic Profiling High-Throughput Phenotypic Profiling = HTPP

Two Applications

Application 1 concentration-response modelling

concentration

Potency estimation: in vitro point-of-departure (POD)

- Nyffeler et al. (2020). Toxicol Appl Pharmacol. PMID: 31899216
- Willis et al. (2020). SLAS Discov. PMID: 32546035
- Nyffeler et al. (2021). SLAS Discov. PMID: 32862757
- Nyffeler et al. (2022). Toxicol Appl Pharmacol. PMID: 35483669

Compare profiles with annotated reference chemicals

→ putative mechanisms

- Nyffeler et al. (2022). Toxicol Appl Pharmacol. PMID: 35483669
- Nyffeler et al. (2023). Toxicol Appl Pharmacol. PMID: 37044265

Research Projects

Helmholtz Young Investigator Grant (1.5 Mio €)

Cooperation with Bayer Crop Science

- funding of a PhD student (~ 200.000 €)
- + large interest from industry

Application of Cell Painting to environmentally relevant taxa

Parkinsonian Neurodegeneration
Rapid Assessment using NAMs
(PANDORA)

⊘efsa ■

15.000 € 7 months Collaborative Research on Avian NAMs for Ecotoxicology (CRANE)

AOP-PD

Developing NAMs tailored to amphibians

Luisa Reger, PhD student

Research Gap

Regulatory Gap

Current pesticide risk assessments may not adequately address unique amphibian biology.

Testing & Data Gaps

Standard tests focus on aquatic life stages with no established methods for terrestrial stages

Crucial need for in vitro endpoints

Proposed Approaches

Develop a tiered risk assessment framework

Consider combining multiple exposure routes (dermal, oral, overspray) for a realistic worst-case scenario

→ Action is needed!

Scope of the Project

- Establish High Throughput Phenotypic Profiling ("Cell Painting) in amphibian cell line
 - → Test ~ 200 chemicals in both cell lines
- Quantitative In Vitro-In Vivo Extrapolation (QIVIVE)
 translates in vitro toxicity data to nominal effect concentrations
- Physiologically-Based Toxicokinetic Models (PBTK)
 breaks down absorption, distribution, metabolism,
 and excretion using amphibian-specific physiology
 - → Collect physiological parameters for amphibians

→ Include more ecology relevant species through modelling or through *in vitro* systems

Insight into ongoing work

- Established two amphibian cell lines successfully in our lab
- Performed Cell Painting with set of reference chemicals in one and compared it to human cell line

Nucleus Golgi Actin skeletor

Collaborative Research on Avian NAMs for Ecotoxicology (CRANE)

Nisa Nurdhy, PhD student Amine Aouini, HiWi

Collaborative Research on Avian NAMs for Ecotoxicology (CRANE)

- Long-term goal: alternative methods to toxicity testing with living birds
- Short-term goals:
 - collect existing in vivo data
 - evaluate existing in silico and in vitro methods

Data curation process

Overall:

1545 entries of 812 unique chemicals

Proportions of species used in joined database for uncertainty analysis

Chemical use category

Variability Analysis Results

Study	Metric	Published	CRANE Data
Pradeep et al.	R ² (↑)	0.57	0.77
	RMSE (↓)	0.70	0.42
Pham et al.	Variance Explained (↑)	68.9%	90.6%
	Uncertainty (↓)	126-fold	17-fold

→ CRANE data shows significantly better results than published studies.

Collaborative Research on Avian NAMs for Ecotoxicology (CRANE)

- Long-term goal: alternative methods to toxicity testing with living birds
- Short-term goals:
 - o collect existing in vivo data
 - o evaluate existing in silico and in vitro methods

Review of existing QSAR methods

- ◆Goal: Evaluate existing methods for avian toxicity prediction to identify best practices for CRANE
- ◆8 QSAR papers reviewed (predictive modeling).
- ◆Key weaknesses identified: Small datasets, limited species diversity, incomplete method reporting, class imbalance not addressed.

QSAR Model Replication - Zhang et al.

→ Our dataset has higher proportion of toxic chemicals (92% vs 21%); this improves the model's sensitivity from 51% to 98% at the cost of the loss of specificity

PANDORA

Milad Mohammadi, PostDoc Amrutha Edassery, post-Master

Parkinson's Disease

⇒ Rotenone and paraquat associated with Parkison's Disease

Other pesticides are suspected to share this mechanism

An in vitro Battery for Parkinson's Disease

human dopaminergic neurons Credit: Marcel Leist, University of Konstanz, Germany

- Testing ~ 100 pesticides registered in Europe
- Combination of novel cell-based and zebrafish assays
- Goal: identification of pesticides that induce mitochondrial toxicity and potentially lead to Parkinson's Disease

⇒ Generated data will be used by regulators (i.e., EFSA) for decision making

Parkinsonian Neurodegeneration Rapid Assessment using NAMs (PANDORA)

human dopaminergic neurons

- LUHMES cells
- set up the assay to test for neurodegeneration upon treatment with test chemicals
- Goal: screen 140 chemicals (at 8 concentrations)
 - \rightarrow > 200 plates
 - → ca 5 months

Up and down sides

Positive

- excellent infrastructure
 - o new labs
 - Grossgeräte
- support from the department
 - funds for smaller equipment

Negative

- would be beneficial to have more information on instruments in other groups/departments (e.g., CitePro)
- no option for tenure (for anyone else but Jo)

Thank you for your attention!

