Accelerator Mass Spectrometry (AMS), recent new (positive) directions

"MAGIC" NUCLEI

(nuclear anal

PROTO

rough alpha emission

Philippe Collon - ChETEC-INFRA 4th Gen Assembly Strasbourg May 27-28, 2024

1 YEAR

AMS orders of magnitude

Isotopic ratios from 10⁻¹² to 10⁻¹⁷

Current volume of lake Michigan: ~ 4.9x10¹⁵ l

2.5x10⁶ liters of water (5.1x10⁻¹⁰)

Ratio of a bottle of vodka in lake Michigan: 1.5×10^{-16} \rightarrow Very bad idea anyway

 \rightarrow 4.2x10⁻¹⁷ corresponds to 0.2l

AMS provides isotopic ratio measurements resulting in:

Principle of any AMS measurements

Traditional AMS developments: From Large to small

AMS developments: lets go bigger and more positive

<u>Argonne Tandem Linear</u> <u>Accelerator System (ATLAS)</u>

Diagram courtesy of www.anl.gov

Recent ATLAS developments fueled by AMS

Capture and Restore: ALL electrical and magnetic elements (including ALL resonators) of ATLAS are digitally monitored and controlled. This allows to:

- Go from a manually tuned pilot beam (ex. ⁸⁰Kr¹²⁺ for ¹⁴⁶Sm²²⁺) to the beam of interest automatically

- Capture every tune and the restore it as we switch between stable beam and isotope of interest

Traditional AMS measurements rely on relative measurements using standard and blanks between unknown samples.

Capture and Restore allows **absolute measurements** using stable and radioactive beams (where stable beams are attenuated using **chopped beams** to allow repeateable attenuation over orders of magnitude) (Ex. ¹⁴⁷Sm, ¹⁴⁶Sm)

Enge Split-Pole Spectrograph

- Consists of two sets of magnetic dipoles enveloped by a single coil
- Traditionally used for AMS experiments at ATLAS
- In this work, used for exploration of ^{39,42}Ar

Magnetic Rigidity of the Enge: 0.7 T-m

Argonne Gas-Filled Analyzer (AGFA)

Magnetic Rigidity of AGFA: 2.5 T-m

 Higher magnetic rigidity than the Enge Split-Pole allows the study of heavier isotopes using AMS

Argonne

- Consists of a vertically-focusing quadrupole & horizontally-focusing dipole
 - Created primarily for use in separating and studying the structure of transuranic nuclei produced in heavy-ion fusion reactions
- In this work, used for tests of AMS of medium-heavy ions

The MONICA detector

• Ionization Chamber comprised of 8 anodes, including 2 sets of split anodes

THE HEBREW

UNIVERSITY OF JERUSALEM

Argonne

⁹²Nb

- *p*-process nuclei present in the Early Solar System (within a few hundred My after formation), but extinct in current solar material
- Medium-heavy isotope with two isobaric contaminants
- Experimental Focus: detection of ⁹²Nb & determination of the yield of reaction ⁹³Nb(γ,n)⁹²Nb
 - Sample created via bremsstrahlungirradiation (HZDR, Germany)

Test of MONICA with AGFA

• Source: Blank

Argonne

 ⁹²Nb¹⁷⁺, 472.56 MeV beam

THE HEBREW

UNIVERSITY OF JERUSALEM

- **Pressure in MONICA**: $35.1 \text{ Torr } CF_4$
- Pressure in AGFA:
 8.1 Torr N₂
- Very short run, slits open 55.5 mm

Measurement of ⁹²Nb

- **Source**: Blank
- ⁹²Nb¹⁷⁺, 472.56 MeV

beam

- Pressure in MONICA:
 35.1 Torr CF₄
- Pressure in AGFA:
 8.1 Torr N₂

MEASUREMENT INCONCLUSIVE

National Ignition Facility (NIF)

- One of the most powerful laser facilities in the world
- Fusion ignition achieved in December, 2022, with record yield of ~1 MJ
- 192 laser beams are amplified and guided to deliver 1.9 MJ onto a target inside a large vacuum sphere (seen right)

NIF Implosion Process ("Shots")

Argonne

THE HEBREW

UNIVERSITY OF JERUSALEM

Capsule schematic 23.5 Outer cone -HDC (80 µm) DT ice 50°44.5° (55-65 µm) DT 1,000-1,050 µm 50° vapour 6.4 mm Fuel fill tube Lasers are focused into the 'Hohlraum', a high-Z, gold-Hohlraum lined, depleted uranium cavity 3.64 mm that converts the lasers into X-Laser entrance

Closest analogue to a stellar explosive environment in the laboratory, which allows us to study nucleosynthesis explosive processes and theoretical models

rays

Neutron-Induced Reactions on ⁴⁰Ar Seeds, Specifically ^{39,42}Ar

⁴⁰Ar(n,2n)³⁹Ar (10.1 MeV Threshold), as a monitor of the integrated fast neutron flux produced at 14 MeV by the D(T,n)⁴He fusion reaction ⁴⁰Ar(2n,γ)⁴²Ar, with a focus on observing a rapid two neutron capture ("mini *r*-process") for the first time in a laboratory setting

Ar is an inert gas that allows absolute collection efficiency without further reactions, making it an ideal diagnostic tool

Neither dedicated shot for the study of neutron-induced reactions on ⁴⁰Ar seeds have been analyzed at this time

Recall the Enge Split-Pole Spectrograph

- After the NIF shot, gas is collected from the vacuum sphere and is used in the ECR source at ATLAS
- NOGAMS analysis occurs using the Enge Split-Pole Spectrograph with MONICA

Preliminary Experiments for ³⁹Ar

214 MeV, ³⁹Ar⁸⁺ beam Samples:

Argonne

 HZDR : ⁴⁰Ar enriched gas at a pressure of ~55 bar activated during 4 hours in the 14 MeV neutron flux of the DT generator at TU Dresden at HZDR.

THE HEBREW UNIVERSITY OF JERUSALEM

- TR5 : blank (tank ^{nat}Ar)
- TR2 / TR4 : background of ³⁹Ar in a shot without Ar in the capsule
- TR8: ³⁹Ar produced by ⁴⁰Ar(n,2n)³⁹Ar in NIF shot on DT-Ar (0.05%) filled capsule

Preliminary Experiments for ⁴²Ar

231 MeV, ⁴²Ar⁸⁺ beam

Sample ILL1 produced by slow, double neutron capture on ⁴⁰Ar at the high-flux nuclear reactor at Institut Laue-Langevin (ILL) in 8.17 day irradiation under neutron fluence of 6.0(9) x 10^{20} cm⁻². Diluted at HUJ to reach ratio of ⁴²Ar/⁴⁰Ar $\approx 10^{-12}$.

Preliminary isotopic abundance 4^{2} Ar/ 4^{0} Ar = 2.5(3) x 10⁻¹²

Preliminary isotopic abundance sensitivity in the 10⁻¹⁵ range

Many thanks to Lauren Callahan for some of her defense slides

Collaborators: M. Paul, R. Vondrasek, R. Scott, R. Pardo, D. Robertson, T. Bailey, L. Callahan, A. Clark, A. Nelson

