4th General Assembly – Strasbourg 27-28/05 2024

New Solid Targets for Nuclear Astrophysics Experiments

Roberta Spartà – Task 3.1 P.I.

INFN-LNS & Università di Enna «Kore»

Alexandra Spiridon

IFIN-HH

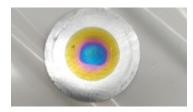
Task 3.1 STAR Solid Targets for Astrophysics Research

1) Realization of ultra-pure material targets

to allow for the measurement of low reaction yields, in which signals from parasitic reactions on impurities can limit experiments;

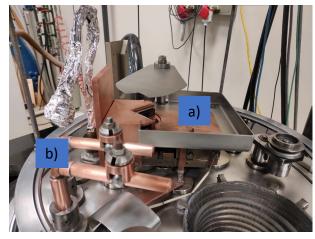
2) Noble elements solid targets (via implantation) to measure key reactions (i.e. for s-process nucleosynthesis in evolved stars) avoiding gas targets inconvenients.

+ a service for the community: standardized testing of the produced targets (including contaminant checks and stability tests)


Target production

@LNS-INFN: ion implantation, PVD methods (resistive heating and electron beam-based systems), cold rolling and tablet pressing techniques

@LNL-INFN: PVD


@IFIN-HH: ion implantation, PVD methods (resistive heating and electron beam-based systems), cold rolling and tablet pressing techniques, PLD (Pulsed Laser Deposition) and methallotermic reduction

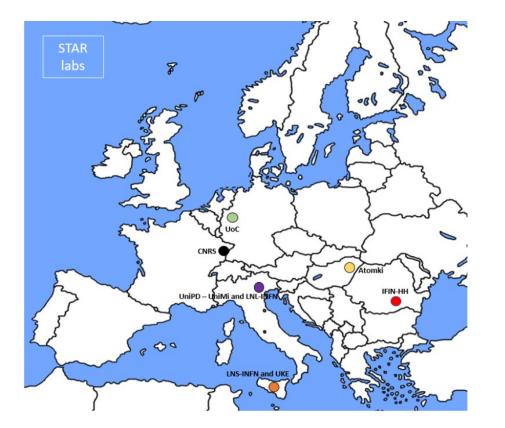
@University of Cologne: PVD, electrolysis and cold rolling

Physical Vapor deposition (PVD) @INFN-LNS:

a) Electron beam;

b) Resistive heating.

Target characterization


- in terms of thickness, uniformity, crystalline structure and chemical purity by using multiple advanced techniques
- target thickness measurement via α -scanning systems @ all the labs
- offered as a service for the community, including contaminant identification and stability tests.

Target characterization: Alpha Particle Transmission spectroscopy @INFN-LNS

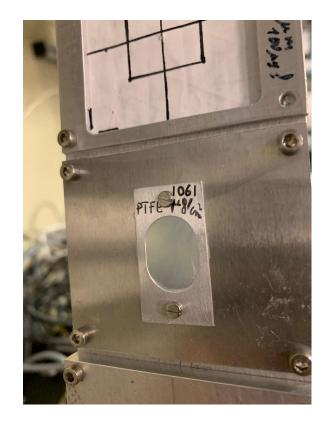
Accelerator Mass Spectrometry (AMS) @ UoC Elastic Recoil Detection Analysis (ERDA) @INFN-LNL Electron Beam Scattering (EBS) @INFN-LNL Rutherford Backscattering Spectrometry (RBS) @ LNS-INFN, IFIN-HH, ATOMKI and UoC Proton Induced X-ray Emission (PIXE) @ IFIN-HH and ATOMKI Proton Induced Gamma-ray Emission (PIGE) @ IFIN-HH Nuclear Reaction Analysis (NRA) @ IFIN-HH, INFN-LNL and ATOMKI Secondary Neutral-particle Mass Spectrometer (SNMS) is available @ ATOMKI Inductively Coupled Plasma Mass Spectrometry (ICPMS) @ ATOMKI & UoC

Deliverable Number	D3.1
Deliverable Title	Report on the experimental techniques used for solid target production on the project web site
WP number	WP3
Lead beneficiary	20 – INFN
Туре	Report
Dissemination Level	Public
Due Date (in months)	18

https://www.chetec-infra.eu/jra/star

Deliverable Number	D3.4
Deliverable Title	Report on testing by radioactive sources and beam bombardment of the solid targets produced
WP number	WP3
Lead beneficiary	20 – INFN
Туре	Report
Dissemination Level	Public
Due Date (in months)	36

Fulfilled on time! 30/04/2024


https://www.chetec-infra.eu/jra/startest

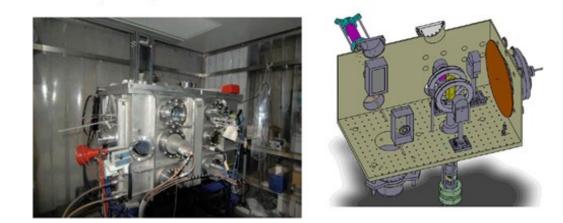
Report: LNS results

@LNS-INFN (AsFiN group)

Reaction to study	Compound	Thickness	Beam/source used	Results
Fluorine background in	CaF ₂ on graphite backing	150 μg/cm ² + 30 μg/cm ² (backing)	²⁴¹ Am α-source	No damage reported
New Jedi experiment (dark boson)	PTFE -(F ₂ C-CF ₂) _n -	1 mg/cm ²	²⁴¹ Am α-source @LNS and proton beam @ UJF NPI	Resisted up to 200 nA of proton beam

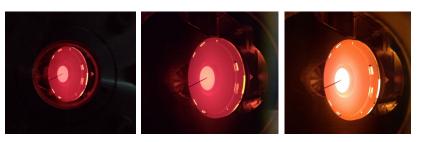
Report: IFIN-HH results

 \rightarrow Alexandra Spiridon after me



Report: LNL results

Target	Reaction		
composition	studied		
Ta₂O₅	¹⁶ Ο(p,γ) ¹⁷ F		
TiN	¹⁴ N(p,γ) ¹⁵ O		
TaN	¹⁴ N(p,γ) ¹⁵ O		
ZrN	¹⁴ N(p,γ) ¹⁵ O		
NaNbO	²³ Na(p, α) ²⁰ Ne		
ZrD ₂	p+d		


Several targets produced with reactive sputtering technique (SALVIA - Setup for AnaLysis with MeV accelerators of Isotopic tArgets and their preparation)

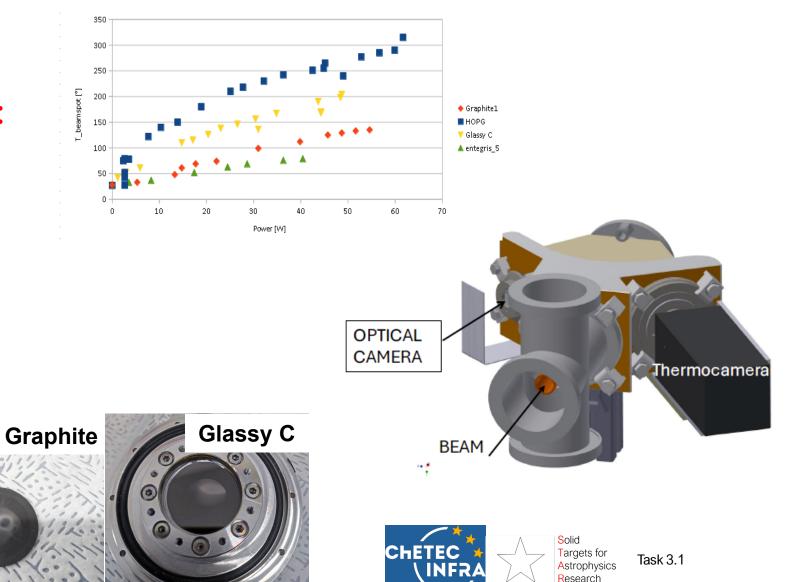
Tested with proton beam \rightarrow Excellent performances in terms of stability against irradiation with intense ion beam!

• UniPD, UniMI & INFN LNL:

HEAT (study of hydrogen desorption from carbon targets)

- GOAL OF THE PROJECT: understand the desorption of hydrogen contamination in carbon targets to be used for ¹²C+¹²C experiments.
- METHODOLOGY: Targets are heated up to ~1000°C, and ERDA and NRA are used to assess H content before/after heating

Data taking concluded in Oct. 2023, data analysis ongoing. Setup no longer on beamline, but available upon request



• UniPD, UniMI & INFN LNL:

Tests on carbon targets for ¹²C+¹²C measurement at Felsenkeller

HOPG

• Strasbourg (CNRS):

¹²C target for the STELLA experiment @Target Thickness Measurement Station :

x-y scanning with α source (on/off beam irradiation track)

temperature drift compensation

Acta Phys. Pol. B Proc. Suppl. 17, 3-A33 (2024)

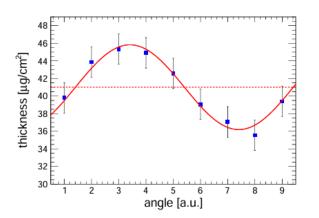


Fig. 2. (Colour on-line) Target thickness scan as a function of the position, where position 1 and 9 are identical measurements and repeated. The red solid curve represents a fit, the red dashed curve is the average thickness from the fit.

• Strasbourg (CNRS):

¹²C target for the STELLA experiment @Target Thickness Measurement Station :

x-y scanning with α source (on/off beam irradiation track)

temperature drift compensation

Acta Phys. Pol. B Proc. Suppl. 17, 3-A33 (2024)

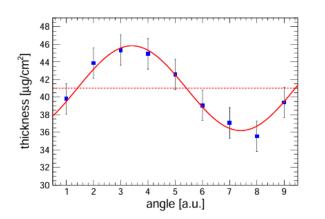
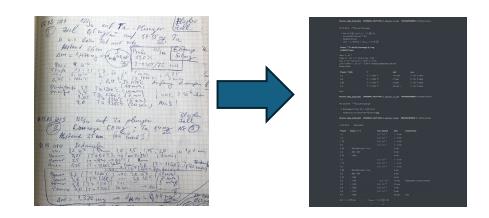
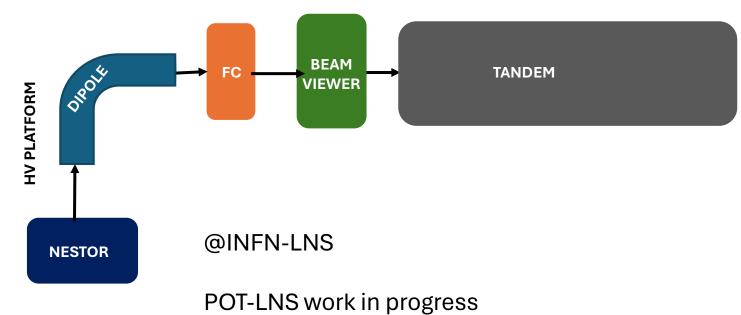



Fig. 2. (Colour on-line) Target thickness scan as a function of the position, where position 1 and 9 are identical measurements and repeated. The red solid curve represents a fit, the red dashed curve is the average thickness from the fit.


University of Cologne

Ongoing digitization of target makers handbook (contains procedures for hard to handle materials)

Goal 2 status

2nd option @DFA of UniCT with the Singletron

RBS analysis?

Next steps

Production of NEST in Catania & Next deliverable D3.7: Publication of production protocols, characterization procedures, and results (month 48)

Next steps

Conclusions

Production of NEST in Catania & Next deliverable D3.7: Publication of production protocols, characterization procedures, and results (month 48)

Service of target characterization: chetec-infra@hzdr.de

These results testify how STAR has gathered European target laboratories in a context where they can learn from mutual experiences and cooperate for the first time.

Next steps

Conclusions

Production of NEST in Catania & Next deliverable D3.7: Publication of production protocols, characterization procedures, and results (month 48)

Service of target characterization: chetec-infra@hzdr.de

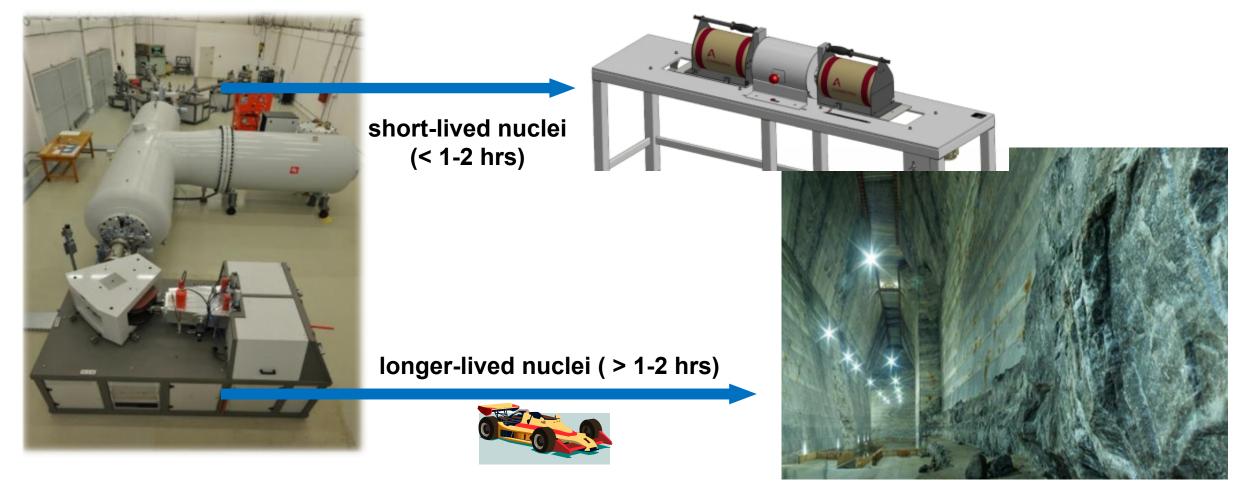
These results testify how STAR has gathered European target laboratories in a context where they can learn from mutual experiences and cooperate for the first time.

STAR people:

INFN (CNIS)

. . .

- R. Spartà, G.L. Guardo, M. La Cognata, G. Lanzalone, A. Massara, A. Tumino,
- T. Szücs,
- S. Courtin, M. Heine, M. Moukaddam, J. Nippert
- N. Florea,, A. Spiridon, L. Trache
- A. Caciolli, R. Depalo, D. Mengoni, D. Piatti, J. Skowronski
- F. Heim, M. Mullenmeister, A. Zilges


Thanks for your attention! Now Dr. Spiridon about IFIN-HH results

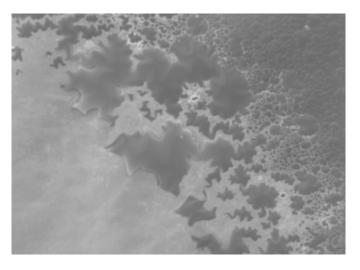
(INFI

- Primarily targets were produced for an ongoing study on ion-ion fusion reactions at sub-Coulomb barrier energies
 - using activation method (preferrably thick targets, but thin were tested too)

- Primarily targets were produced for an ongoing study on ion-ion fusion reactions at sub-Coulomb barrier energies
 - using *activation method* (preferrably thick targets, but thin were tested too)
- Goals: first and foremost, durable under beam currents > 1-5 pµA and irradiations longer than 1 hr and handling (transportation over large distances)

Reaction to study	Method	Target material	Thickness	Production method	Tested with	Result
¹³ C + ¹⁶ O	¹⁶ O beam on ¹³ C targets	¹³ C powder (on Ta backing 3mg/cm ²)	~130-150 nm* (~30µg/cm²)	PVD	¹⁶ O beam [various intensities], RBS, SEM	Did not hold for irradiations with I > 1 pµA Complete deterioration in beam spot area

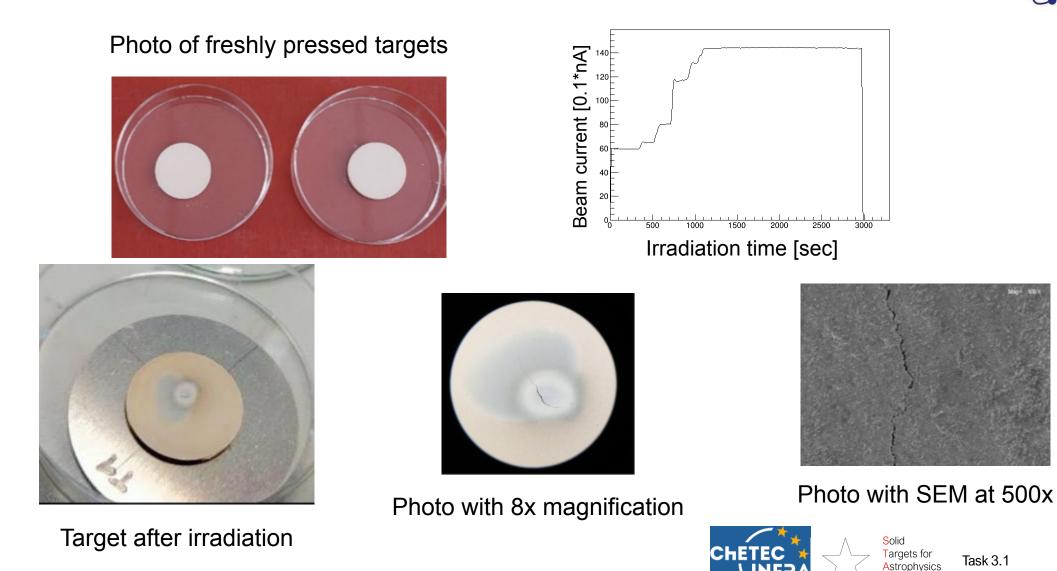
* max that could be obtained due to time constraints and exfoliation issues



Target pre-irradiation

Target post-irradiation with I ~ 5 μA

Picture taken with SEM at 100x


- Primarily targets were produced for an ongoing study on ion-ion fusion reactions at sub-Coulomb barrier energies
 - using *activation method* (preferrably thick targets, but thin were tested too)
- Goals: first and foremost, durable under beam currents > 1-5 pµA and irradiations longer than 1 hr and handling (transportation over large distances)

Reaction to study	Method	Target material	Thickness	Production method	Tested with	Result
13 C + 16 O	¹³ C beam on ¹⁶ O targets	CeO2 powder	1 mm (0.8-1 g/cm²)	Tablet pressing*	¹³ C beam, SEM	Can hold for max 1 hr irradiations and I < 7 µA Crack under temperature changes even with target cooling

* fragile when handled

Task 3.1

Research

- Primarily targets were produced for an ongoing study on ion-ion fusion reactions at sub-Coulomb barrier energies
 - using **activation method** (preferrably thick targets, but thin were tested too)
- Goals: first and foremost, durable under beam currents > 1-5 pµA and irradiations longer than 1 hr and handling (transportation over large distances)

Reaction to study	Method	Target material	Thickness	Production method	Tested with	Result
13 C + 16 O	¹³ C beam on ¹⁶ O targets	Ta ₂ O ₅	Several (< 0.5 mg/cm ²)	Anodization of Ta foil in water	¹³ C beam, RBS	Good uniformity, large number of O atoms, easy handling Did not hold for irradiations with I > 1 pµA

- Primarily targets were produced for an ongoing study on ion-ion fusion reactions at sub-Coulomb barrier energies
 - using *activation method* (preferrably thick targets, but thin were tested too)
- Goals: first and foremost, durable under beam currents > 1-5 pµA and irradiations longer than 1 hr and handling (transportation over large distances)

Reaction to study	Method	Target material	Thickness	Production method	Tested with	Result
¹³ C + ¹⁶ O	¹³ C beam on ¹⁶ O targets	WO ₃ (on Ta backing)*	~ 240 nm (~200 µg/cm²)	PVD	¹³ C beam, RBS	Good uniformity, large number of O atoms, easy handling Did not hold for irradiations with I > 1 pµA

* targets tested as part of <u>TNA experiment</u> (proposal 23203309-ST for Dec 2023)

Target after RBS measurements

Target after irradiation

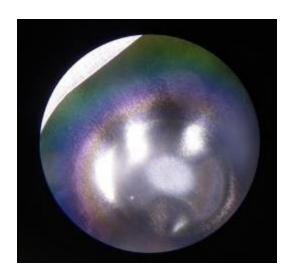
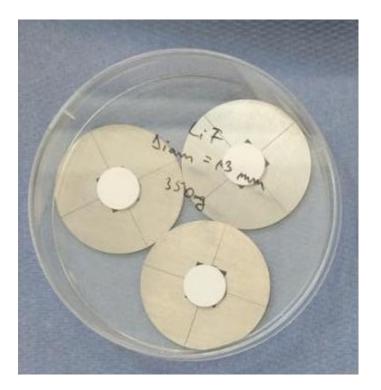
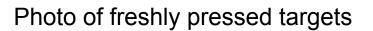
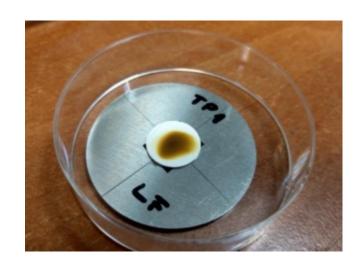


Photo with 8x magnification


- Primarily targets were produced for an ongoing study on ion-ion fusion reactions at sub-Coulomb barrier energies
 - using *activation method* (preferrably thick targets, but thin were tested too)
- Goals: first and foremost, durable under beam currents > 1-5 pµA and irradiations longer than 1 hr and handling (transportation over large distances)


Reaction to study	Method	Target material	Thickness	Production method	Tested with	Result
¹³ C + ¹⁹ F	¹³ C beam on ¹⁹ F targets	LiF powder	1 mm	Tablet pressing*	¹³ C beam	Overwhelming contamination in prompt spectra from reactions on Li (that also produced dangerous rates in the detector) Did not hold for irradiations with I > 1 μ A and longer than 1 hr


* fragile when handled

Target after irradiation

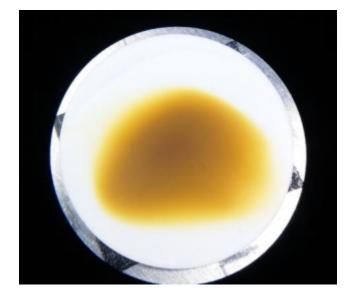


Photo with 8x magnification

- Primarily targets were produced for an ongoing study on ion-ion fusion reactions at sub-Coulomb barrier energies
 - using activation method (preferrably thick targets, but thin were tested too)
- Goals: first and foremost, durable under beam currents > 1-5 pµA and irradiations longer than 1 hr and handling (transportation over large distances)

Reaction to study	Method	Target material	Thickness	Production method	Tested with	Result
¹³ C + ¹⁹ F	¹³ C beam on ¹⁹ F targets	BaF ₂ powder	1 mm	Tablet pressing*	¹³ C beam	Did not hold for irradiations with I > 1 μA and longer than 1 hr

Task 3.1

* very fragile when handled

