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o Fritz Sauter in 1931 first proposed that electron positron pairs can be
created in the presence of strong electric field(E).

@ Julian Schwinger gave a complete theoretical description and
calculated the rate of such pair production. [Schwinger J., Phys. Rev.

(1951)]
E 2 2.3
[~ 7(6 ) exp e
Am3h2c ehE

@ Experimental realisation of this novel phenomenon is still afar.
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Introduction
Why Graphene?

@ Single layer of Carbon atoms
arranged in a hexagonal lattice.
Two sublattices A and B.
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Introduction
Why Graphene?

@ Single layer of Carbon atoms
arranged in a hexagonal lattice.
Two sublattices A and B.

@ Tight binding model with the
nearest neighbour interation
gives two bands.

@ Two bands touches each other
at some special points known as
Dirac Points. \ 4

@ Theory around Dirac points look
exactly like the theory of
massless Dirac
particles[Novoselov et al. Nature € = vrld|
(2005)].
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Effect of External Electric Field

o Parallels between Schwinger process in QED vacuum and Graphene

QED

Graphene

Dirac Sea

Fermi Sea

Electron-Positron pairs | Electron-Hole pairs
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Effect of External Electric Field

o Parallels between Schwinger process in QED vacuum and Graphene
QED Graphene
Dirac Sea Fermi Sea
Electron-Positron pairs | Electron-Hole pairs

@ Proposed in the paper [Dora B., Moessner R.,Phys Rev B., (2010)]

2
p TVFP
n(p, t) = O(px)O(eEt — px) exp <_ heEy>

_ 2eE  |vreEt? 3/2
N(t)_ﬂ2v,:h\/ no St
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Effect of External Electric Field

o Parallels between Schwinger process in QED vacuum and Graphene
QED Graphene
Dirac Sea Fermi Sea
Electron-Positron pairs | Electron-Hole pairs

@ Proposed in the paper [Dora B., Moessner R.,Phys Rev B., (2010)]

n(p, t) = ©(px)O(eEt — px) exp <_7TVpr>

heE
2eE  |vpeEt? 3
N(t) = \/ ~ tE3/?
( ) 7T2VFh h
o Different stages
Classical Kubo Schwinger /Kibble-Zurek
h h I
t< g | w<t< e | JEE<t< L
j~ Et j~E j o~ tE3/?
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Kinetic Equation Approach

Formalism?

!Based on works by Smolyansky S. A., Blaschke D., Schmidt S. ...,e.g. see
[Smolyansky et. al. Particles (2020); 2004.03759]
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Kinetic Equation Approach

Formalism?

@ Effective hamiltonian near Dirac points
1 o = Byl
H(e) = ve gz 2 V(3. 1)@ - P)W(, 1)
p

@ Diagonalise the Hamiltonian using unitary transformation to go to the
quasiparticle picture.

Vs U =6 = ( bf((f’ ;a,l:)t))
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Kinetic Equation Approach

Formalism?

@ Effective hamiltonian near Dirac points
1 o = Byl
H(e) = ve gz 2 V(3. 1)@ - P)W(, 1)
p

@ Diagonalise the Hamiltonian using unitary transformation to go to the
quasiparticle picture.

Vs U =6 = < bf((f ;a,l:)t))

@ Distribution functions

fe(ﬁ? t) = <aT(57 t)a(ﬁ, t)> fh(ﬁﬂ t) = <bT(_5v t)b(_ﬁv t)>

!Based on works by Smolyansky S. A., Blaschke D., Schmidt S. ....e.g. see
[Smolyansky et. al. Particles (2020); 2004.03759]
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Kinetic Equation

Numerical Solutions

@ From the equation of motion we get the following integral equation
for the distribution functions f = fo = f4

] t
F(B.1) = SA(B.1) [ dUA(B. )1 — 2f(B. ) cosO(t. )

to

ﬁ - EiP> — E2Py
h t) = vr/P? + P2, \(B, t) = ev? d
where ¢(p, t) = vg , AP, t) = evg (5.1 an
o(t,t') =2 [, dt"e(p, t")
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Kinetic Equation

Numerical Solutions

@ From the equation of motion we get the following integral equation
for the distribution functions f = f. = f3

] t
F(B.1) = SA(B.1) [ dUA(B. )1 — 2f(B. ) cosO(t. )

to

E1Py — B3Py
here e(p, t) = vey/ P2 + P2, \(p, t) = ev2——————— and
w (P t) = vF 1 (P, t) VF (P, t)2
o(t,t') =2 [, dt"e(p, t")
@ The above Integral equation is equivalent to the following set of
Ordinary Differential Equations

1 2 2
F=>hu u:)\(l—2f)—ﬁ€v \'/:%u

@ These can be solved numerically for any given external electric field E.
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Results
Constant Electric Field

@ Units: Two parameters from Constant Pulse
graphene Fermi velocity v¢ and

lattice spacing a. 03

@ Timescale a/vg and momentum 0.6

in terms 7/ a. 5

f(parpy)

o Constant electric field, figure
shows distribution funciton at
t= 5%.

@ Number density
N = [f(p,t)d°p

0.2
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Results
Constant Electric Field

ps = 0.01
—— e = 0.00001
— p=-0.1 ||

@ Units: Two parameters from
graphene Fermi velocity v¢ and sl
lattice spacing a.
e Timescale a/vrF and momentum 3 061
in terms 7/ a. £
= 04f
o Constant electric field, figure
shows distribution funciton at 02l
t= 5%.
@ Number density 0

N = [f(p,t)d°p

Biplab Mahato (UWr) KE approach to Graphene

7/16



Results

Sauter Pulse
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Sauter Pulse

@ Sauter Pulse

E(t) = Egcosh™?(kt)

F Py py)
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Results

Sauter Pulse

01— E®) y

@ Sauter Pulse _6-1077] 7

E(t) = Eycosh™2(kt) 4207y |

2.1072 .
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Results

Sauter Pulse

0.1 H— N 1

@ Sauter Pulse

E(t) = Egcosh™3(kt)

N(t) or E(t)
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Approximate Solution?

?[Blaschke et al., (2022); 2201.10594]
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Approximate Solution?

@ Low Density Approximation f < 1

F(t) = (/ ' A(t') cosO(t, —oo)) </ de'A(t') sinO(t', — ))
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Approximate Solution?

@ Low Density Approximation f < 1

F(t) = (/ ' A(t') cosO(t, —oo)) (/ de'A(t') sinO(t', — ))

o Effective mass Approximation
o Replace momentum with its time average

P? < P(t)? >=p? + & < A(t)? >= p* + & m?v}?

(B 1) = — S5 E(1) = Np)E(2)

?[Blaschke et al., (2022); 2201.10594]
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Approximate Solution?

@ Low Density Approximation f < 1

F(t) = (/ ' A(t') cosO(t, —oo)) (/ de'A(t') sinO(t', — ))

o Effective mass Approximation
o Replace momentum with its time average

P? < P(t)? >=p? + & < A(t)? >= p* + & m?v}?

o M(B.t) = — S5 E(t) == A(p)E(t)

@ Distribution functions can directly be computed via

f(B, t) </ dt’' \( cos@(t’,—oo))2

?[Blaschke et al., (2022); 2201.10594]
KE approach to Graphene 9/16




Comparison

w"k — — exact
apprximation

n(m_g]

Slope = 1.52 =~ %

10° 102 10 10
E(Vm—t)

The Approximate solution deviates from the exact solution for large

. 27 m.
external fields. == VF <lorE<

27rev,:
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Experiment 1
[Berdyugin et. al., Science, 2022]
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Experiment 2
[Schmitt A. et. al. Nature Phys. 2023]
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Summary and Outlook

@ Graphene can be a testing ground to gain insight about the structure
of QED vacuum.

@ Kinetic equation approach to it can produce the momentum profile of
the created electron hole pairs.

Future Works

@ Include back-reaction and collision terms.
@ Gapped system [ S. P. Gavrilov, D. M. Gitman, Phys. Rev. D,1996]

— 712
i ~ E@ Ul
Gy ~ t zexp(eVFEh
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Thank You
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Supplimentary slide

1[Dora B., Moessner R.,Phys Rev B., 2010]

Constant Electric field E

interband

n(p. t) =

N(t

Biplab Mahato (UWr)

< (polarization)

intraband

(conduction)

E.

E

2
7TVpr

O(px)O(eEt — px) exp (— P oF )

m2veh h
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Comparison with other methods

[Panferov A., EPJ WoC 204,06008 (2019); 1901.01395]
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