Correlations and Semi-Universal Relations Connecting Nuclear Matter and Neutron Stars

J. M. Lattimer

Department of Physics & Astronomy

STONY BROOK UNIVERSITY

Many-Particle Systems Under Extreme Conditions
Polish-German WE-Aeraeus Seminar & Max Born Symposium

Görlitz, Germany, Dec. 3-6, 2023

Acknowledgements

Funding Support:

DOE - Nuclear Physics

DOE - Toward Exascale Astrophysics of Mergers and Supernovae (TEAMS)

NASA - Neutron Star Interior Composition ExploreR (NICER)

NSF - Neutrinos, Nuclear Astrophysics and Symmetries (PFC - N3AS)

DOE - Nuclear Physics from Multi-Messenger Mergers (NP3M)

Recent Collaborators:

Boyang Sun (Stony Brook), Duncan Brown & Soumi De (Syracuse), Christian Drischler, Madappa Prakash & Tianqi Zhao (Ohio), Sophia Han (TDLI), Sanjay Reddy (INT), Achim Schwenk (Darmstadt), Andrew Steiner (Tennessee) & Ingo Tews (LANL)

Neutron Stars: Basics

 Nearly all known NSs are pulsars (rapidly rotating and highly magnetized) that emit X-ray, optical or radio beams from their poles, like a lighthouse.

- The radii of most NSs are about 12 km.
 - Most, if not all, NSs are formed in the gravitational collapse of massive stars at the ends of their lives; some of those collapses produce black holes instead. Some massive NSs may be formed in the aftermath of a binary merger of two lower-massed neutron stars.
 - The minimum possible NS mass is $0.1M_{\odot}$, but none are observed to be less massive than $1M_{\odot}$.

PhD student **Jocelyn Bell** and Prof. **Antony Hewish** Initially "**Little Green Men**" **Hewish won Nobel Prize in 1974**

Pulsars are Precise Clocks

PSR J0437-4715

At 00:00 UT Jan 18 2011:

P = 5.7574519420243 ms +/- 0.0000000000001ms

The last digit changes by 1 every half hour!

This digit changes by 1 every 500 years!

This extreme precision is what allows us to use pulsars as tools to do unique physics!

Pulsar Timing:

Pulse Phase Tracking

Unambiguously account for every rotation of a pulsar over years

Measurement - Model = Timing Residuals

200ns RMS over 2 yrs

Pulsar Timing for PSR J0737-3039

$$m_A = 1.338185^{+12}_{-14} \text{ M}_{\odot}$$

 $m_B = 1.248868^{+13}_{-11} \text{ M}_{\odot}$

These are the most precisely known masses of any astronomical object.

Masses of Pulsars in Binaries from Pulsar Timing

Largest: $2.08 \pm 0.07~M_{\odot}$ Smallest: $1.174 \pm 0.004~M_{\odot}$

Several other NS masses have been measured by other means, including some of more than $2M_{\odot}$ (e.g., black widow pulsars), but their mass uncertainties are generally large $_{\square}$, $_{\square}$, $_{\square}$, $_{\square}$, $_{\square}$, $_{\square}$

How Can a Neutron Star's Radius Be Measured?

- Flux = $\frac{\text{Luminosity}}{4\pi D^2} = \frac{4\pi R^2 \sigma_B T_s^4}{4\pi D^2} = \left(\frac{R}{D}\right)^2 \sigma_B T_s^4$ X-ray observations of quiescent neutron stars in low-mass X-ray binaries to measure distance D, Flux and surface temperature T_s . GR effects introduce an R dependence.
- $F_{Edd} = \frac{GMc}{\kappa D^2}$ X-ray observations of bursting neutron stars in accreting systems to measure the Eddington flux F_{Edd} . κ is the poorly-known opacity. GR effects introduce an R dependence.
- Phase-resolved spectroscopy of millisecond pulsars with nonuniform surface emissions. NICER: PSR J0030+0451, PSR J0437-4715 (closest and brightest millisecond pulsar) and PSR J0740+6620 (most massive pulsar).
- $R_{1.4} = (11.5 \pm 0.3) \frac{\mathcal{M}}{M_{\odot}} \left(\frac{\tilde{\Lambda}}{800}\right)^{1/6}$ km, $\mathcal{M} = \frac{(M_A M_B)^{3/5}}{(M_A + M_B)^{1/5}}$ GW observations of neutron star mergers to measure the chirp mass \mathcal{M} and the binary tidal deformability $\tilde{\Lambda}$ (GW170817).
- $I \propto M_A R_A^2$ Radio observations of spin-orbit coupling in extremely relativistic binary pulsars to measure masses M_A , M_B and moment of inertia I_A [PSR J0737-3039 ($P_b = 0.102$ d), PSR J1757-1854 (0.164 d), PSR J1946+2052 (0.078 d)].

Neutron Star Interior Composition ExploreR (NICER)

Launched aboard a SpaceX Falcon 9 rocket on June 3, 2017.

It is installed aboard the International Space Station.

Dedicated to the study of neutron stars through soft X-ray timing.

Science Measurements

Reveal stellar structure through lightcurve modeling, long-term timing, and pulsation searches

Lightcurve modeling constrains the compactness (*M/R*) and viewing geometry of a non-accreting millisecond pulsar through the depth of modulation and harmonic content of emission from rotating hot-spots, thanks to gravitational light-bending...

Science Measurements (cont.)

... while phase-resolved spectroscopy promises a direct constraint of radius *R*.

GW170817

- LVC detected a signal consistent with a BNS merger, followed 1.7 s later by a weak gamma-ray burst.
- $\bullet \sim 10100$ orbits observed over 317 s.
- $\mathcal{M} = 1.186 \pm 0.001 \ M_{\odot}$
- $M_{\rm T} = M_A + M_B \gtrsim 2^{6/5} \mathcal{M} = 2.725 M_{\odot}$
- $E_{\rm GW} > 0.025 M_{\odot} c^2$
- $D_I = 40^{+8}_{-14} \text{ Mpc}$
- $75 < \tilde{\Lambda} < 560 \text{ (10.9 km} < \bar{R} < 13.3 \text{ km)}$
- $M_{\rm ejecta} \sim 0.06 \pm 0.02 \ M_{\odot}$
- Blue ejecta: $\sim 0.01 M_{\odot}$
- Red ejecta: $\sim 0.05 M_{\odot}$
- Highly opaque ejecta implies substantial r-process production
- M_T +Ejecta+GRB: $M_{max} \lesssim 2.22 M_{\odot}$

Summary of Astrophysical Observations

Neutron Star Structure

Tolman-Oppenheimer-Volkov equations

$$\frac{dp}{dr} = -\frac{G}{c^4} \frac{(mc^2 + 4\pi pr^3)(\varepsilon + p)}{r(r - 2Gm/c^2)}$$

$$\frac{dm}{dr} = 4\pi \frac{\varepsilon}{c^2} r^2$$

Varying the EOS

Varying the EOS

The Radius – Pressure Correlation

Tidal Deformatibility - Moment of Inertia

Binding Energy - Compactness

F-Mode Properties - Moment of Inertia

$$\Omega_f = \frac{GM\omega_f}{c^3}$$

Zhao & Lattimer 2022

$M_{ ext{max}}, R_{ ext{max}}, \mathcal{E}_{ ext{max}}, P_{ ext{max}}$ Correlation

$M_{ m max}, R_{ m max}, \mathcal{E}_{ m max}, P_{ m max}$ Correlation

Offengeim's finding suggest the power-law relations

$$\mathcal{E}_{\text{max}} = (1.809 \pm 0.36) \left(\frac{R_{\text{max}}}{10 \text{km}}\right)^{-1.98} \left(\frac{M_{\text{max}}}{M_{\odot}}\right)^{-0.171} \text{GeV fm}^{-3},$$

$$P_{\text{max}} = (118.5 \pm 6.2) \left(\frac{R_{\text{max}}}{10 \text{km}}\right)^{-5.24} \left(\frac{M_{\text{max}}}{M_{\odot}}\right)^{2.73} \text{MeV fm}^{-3},$$

We found, in addition, that additional points along the M-R curve, at $M=fM_{\rm max}$, have similarly accurate correlations:

$$\begin{array}{lcl} \mathcal{E}_f & = & a_{\mathcal{E},f} \left(\frac{R_{fM_{max}}}{10 \mathrm{km}} \right)^{b_{\mathcal{E},f}} \left(\frac{M_{max}}{M_{\odot}} \right)^{c_{\mathcal{E},f}}, \\ P_f & = & a_{P,f} \left(\frac{R_{fM_{max}}}{10 \mathrm{km}} \right)^{b_{P,f}} \left(\frac{M_{max}}{M_{\odot}} \right)^{c_{P,f}}, \end{array}$$

Correlations at $M = fM_{\rm max}$

Correlations With fM_{max} and 2 R Values

$\mathcal{E}_f = a_{\mathcal{E},f} \left($	$\frac{R_{M_1}}{10\mathrm{km}}\bigg)^{b_{\mathcal{E}},f}$	$\left(\frac{R_{M_2}}{10\mathrm{km}}\right)^{c_{\mathcal{E}}}$	$\int_{0}^{\infty} \left(\frac{M_{max}}{M_{\odot}}\right)^{d}$,
$P_f = a_{P,f}$	$\left(\frac{R_{M_1}}{10\mathrm{km}}\right)^{b_{P,f}}$	$\left(\frac{R_{M_2}}{10\mathrm{km}}\right)^{c_P}$	$\int_{0}^{f} \left(\frac{M_{max}}{M_{\odot}} \right)^{d_{P,f}},$
$f = M/M_{\rm max}$	$M_1/M_{ m max}$	$M_2/M_{ m max}$	$\Delta(\mathit{In}\mathcal{E}_f)$
1	1	1/2	0.0046047928
4/5	2/3	1/2	0.0035713650
2/3	2/3	3/5	0.0050640415
3/5	4/5	1/2	0.0024633916
1/2	2/3	1/2	0.0047856724
2/5	3/5	1/2	0.0050640415 0.0024633916 0.0047856724 0.0047133738
$f = M/M_{\rm max}$	$M_1/M_{ m max}$	$M_2/M_{ m max}$	$\Delta(\ln P_f)$
1	1	1/2	0.019032030 0.0096117432
4/5	4/5	1/2	0.0096117432
2/3	2/3	3/5	0.014041491
3/5	2/3	1/2	0.00068963633
1/2	3/5	1/2	0.020100887
2/5	3/5	1/2	0.00068963633 0.020100887 0.032359011

Applications

- An analytic method of directly inverting the TOV equations, accuracy can be made arbitrarily high (number of f and R values). Existing techniques use parameterized EOS models in probabilistic (Bayesian) approaches having unquantified systematic uncertainties stemming from the model choice and parameter ranges (prior distributions).
- Correlations of $c_{s,\max}(M_{\max},R_{\max})$ also exist (Offengeim 2023 found $\sim 10\%$ uncertainty), but accuracies can be improved using $\geq 2~R$ values. Accurate values for specific f values would be useful for interpolating within the $\mathcal{E}-P$ grid. They could also allow probing the composition of the neutron star interior (phase transitions, etc.).
- Correlations of $\tilde{\Lambda}$, \bar{I} and BE/M with M_{max} and R_{max} remain to be explored.