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Thermalisation of many-body
systems

Thermalisation is the process of physical bodies reaching thermal
equilibrium through mutual interaction. Although it is natural
for physical systems to reach equilibrium not all quantum states
undergo thermalisation. Mechanisms discovered to prevent
thermalisation:

Kinematically constrained dynamics

Many body localisation
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Fractons are excitations that cannot move in isolation. As we will see an example of
such constrained dynamics is obtained if we impose charge and dipole
conservation. This is an example of a glass-like system.



Gapped fractons

Fracton phases constitute a new class of quantum state of matter. They are
characterized by excitations that exhibit restricted mobility, being either immobile
under local Hamiltonian dynamics, or mobile only in certain directions.
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Iractons i spin hquids A &
In addition to gapped fractons gapless fractons were considered by A
Pretko, motivated by spin liquids. A quantum spin liquid is a state 1 ﬁﬁt)
of matter in which the spins are highly entangled and don’t order, )
even at zero temperature. In the simplest case the low-energy, long- A)
wavelength physics of spin liquids is given by the electromagnetic ¢

energy. Pretko conjectured a generalisation of this idea introducing
tensor gauge fields
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An important observation is that if we couple sources to this theory, both the
charge and the dipole moment will be conserved
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This implies that the charges cannot move freely but are constrained in
analogy to the X-cube model. Quite remarkably symmetric tensor gauge
theories emerge in the dual formulation of elasticity:.



Bose-Hubbard realisation mn 1d

(@)  constrained hopping (b) tilted optical lattice
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(
The restricted kinematics of dipole conservation. An isolated boson cannot move,
while two nearby bosons can move only by coordinated hopping in opposite
directions. A boson and a hole (blue circle) can move freely in both directions. (b)
Approximate dipole conservation can be engineered in tilted optical lattices with large
tilt strength V . Energy conservation then forbids single bosons from hopping, while
dipole-conserving hopping processes are allowed.



Bose-Hubbard reahisation in 2d
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The first two terms of the Hamiltonian describe a familiar hard-core boson ex-
tended Bose-Hubbard model with t; and V' being the tunneling amplitude and
the nearest neighbor interaction strength respectively. The symbol (ij) indicate
the sum over nearest neighbors on the lattice. The last term contains simultane-
ous tunneling processes of two particles, dubbed the ring-exchange interaction.
The ring-exchange interaction we are considering is a combination of two second
neighbor hoppings along 1 x 2 and 2 x 1 plaquettes which preserves the center of
mass of two particles and the number of particles in bipartite sublattices. The
symbol [¢7kl] denotes the summation over all possible plaquettes. We consid-
ering strongly repulsive limit V' > t1,ts, where the ground state realizes the
checkerboard charge density wave (CDW) order.



Defect dynamies in crystals

A dislocation is a half-line insertion, indicated by the dashed red
line. Its topological charge is a Burgers vector, indicated by an
: arrow. This charge can be picked up by traversing a contour
around the defect as indicated by the dotted line. The topological
defects associated with rotational order are called disclinations.
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Spin hydro,
Micropolar

fluids

In non-central heavy-ion collisions,
the generated matter is both hot and
dense and carries significant initial
orbital angular momentum. This
momentum results in the global
polarization of hadrons in the final
state. Such polarization can be
detected through the parity-violating
weak decays of hyperons. The STAR
experiment has recorded a non-zero
level of global polarization. With the
availability of an extensive new
dataset, there is now the opportunity
to assess the polarization of
multistrange hyperons. These
measurements could provide
valuable insights for hydrodynamic
analysis of the system.
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I'rom solids to fluids: hydrodynamics

- theory of conserved quantities

This conservation of particle number is expressed in hydrodynamics as conservation of mass,
by the continuity equation

Op + Oi(pu;) = 0

Another equation is the equation of motion of a fluid element. This equation can be
written as a momentum conservation equation.

O(pui) + 0;Ti5 = 0 Tij = poij + puiu;

We are still one equation short to have a complete system. We add entropy conservation
equation, which can be expressed as energy conservation using thermodynamics
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Rewriting we get the Euler’s equation

pg? -Fpu - Vu = —Vp




Superfluids

A relativistic superfluid can be thought of as a fluid charged under a
spontaneously broken U(1) symmetry. In the grand canonical ensemble the
thermodynamic variables characterizing normal, charged fluids are the
temperature and chemical potential, and their conjugate variables entropy
and total charge density. Once the U(1) symmetry is spontaneously broken
then the goldstone boson provides for another degree of freedom. The
equations for the slow modes can be written as

0ip+ F(, Ve, ...) = 0.

We assume that there exists an equilibrium solution for which F vanishes.
The evolution for fluctuations can be deduced from a microscopic theory for
the Hamilton’s equations (Josephson relation)

Orp = —v;0;¢ — 1.



Hydrodynamies of crystals

Josephson relation is not a conservation equation. Therefore it does not
conform to the usual form of hydrodynamic equations. In order to cure this
one can take a derivative of both sides. Note, hover that this changes the
counting of derivatives.

In analogy with superfluids equations governing crystals at finite temperature
read

0y ¢%(r,t) + VI (r,t) = 0

with the following densities and current densities,

(&%) = (&,p, % a%)  and  (JL) = (JO, T2, TG, J%.).



Symmetry

Hydrodynamics follows the evolution of conserved quantities. These
are macroscopic expectation values of microscopic operators. They
follow from the symmetries of the system. We explore systems with

dipole symmetry. Monopole-dipole-momentum (MDMA) algebra

Monopole: () Dipole: @);, v =1,...,d.

Momentum: £F;, 1 =1,...,d.

1Q,Q} =1Q,Q:} =1Q, P} = 0.
{Pia Q]} — Q(S’LJ

Transformation of fields: 5(%5{”\11 — {\If, OzQ, BZQZ, W/ZPZ}

Heisenberg algebra.



Hydrodynamies from Poisson brackets

We express conserved charges in terms of densities

Q) = /dd:vq, Q" = /ddmﬁiq, P! = /ddxpi.

The starting point is the “current algebra”, which one can derive from a
microscopic theory (apart from entropy, which is postulated).

{pi(X)v IO(Y)} — _p(X)ax”’?5(X — Y)a
{pi(x),s(y)} = —s(x)0,i0(x —y),
{pi(x),p;(y)} = —|pj(x)0p: + pi(y)Dpi]d(x —y).

The equations of motion follow from the Poisson brackets of the
hydrodynamic variables with the Hamiltonian

Orp ={p,H} = —0,',
Owpi = {pi, H} = —0, T}



Thermodynamics of dipole-conserving systems cannot be captured by the stan-
dard textbook treatment. It requires a modified approach that systematically
incorporates kinematic constraints arising from the dipole conservation.

The internal energy density of a generic system in equilibrium is a function of
the entropy and conserved charge densities, for example € = €(n, s, p;). How-
ever, owing to the noncommutative structure of the algebra, dipole-conserving
systems are not generic. In fact, the combination p;/n has a shift symmetry
under dipole transformations in analogy to a Nambu-Goldstone mode. There-
fore, it could enter via the invariant combination V;; = 9;(n~'p;). It is then
necessary to introduce a conjugate variable Fj;; that, can be interpreted as a

flux of dipoles.

Thus, we infer that different (constant) values of V;; label distinct thermody-
namic states. For such systems, we postulate that the first law of thermody-

namics reads



Dipole-conserving fluids

Following the canonical paradigm of hydrodynamics, we consider the long-
wavelength, near-equilibrium dynamics that is governed by the hydrodynamic
variables, that is, the densities n, €, p; of the conserved charges. Macroscopic
currents are then given by local expressions of the conserved densities organized
in a systematic derivative expansion. In writing these constitutive relations a set
of unknown parameters will emerge, known as transport coefficients, which are
then constrained imposing the laws of thermodynamics, and Onsager relations.

Nonetheless, the non-standard structure the dipole symmetry introduces
suggest we should consider the momentum of the system p; to be of order
O(p;) ~ O(9;)~*, such that V;; ~ O(9;)". Therefore, our derivative expansion
is defined in terms of the order at which the equations of motion are truncated,
e.g. we will refer to n—th order hydrodynamics if the set of differential equations
is truncated as

Ore = —0;J" 4+ O(0;)*" 3,
atpi _ _ajsz' + O(ai)2n—|—2’
on = —Giﬁjjij -+ (’)(&i)%*?’ :

Notice that onshell temporal derivatives will not be independent from spatial
eradients, in particular we have the hierarchy O(9;) ~ O(0;).



Constitutive relations

Entropy current
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Using this we can fix the form of constitutive relations

. : 1
Ji = (e + P)V, — Fijat(%) +ad;

T" = Pd;; + Vip;j + Vip; + 31{Fij]:f i Vi

where J' = &' — F; ;0 (%) .

We get one dissipative coefficient at this level of the expansion.



Towards fracton superfluids

The state-of-the-art developments in fracton superfluidity involves a
first steps in the systematic study of symmetry breaking patterns and
dissipation.

P-Wave: dipole broken, U(1) unbroken
S-wave - Both dipole and U(1) broken

The challenge is to correctly develop a gradient
expansion.



Conclusions

A lot of progress in understand hydrodynamic
and quasi-hydrodynamic theories with intrinsic
symmetries

Lessons from elasticity theory

New examples of spontaneous symmetry

breaking
New insights into defect dynamics

Thank you!



