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Warm-dense matter and inertial confinement fusion
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ICF Modelling ), SASYS

s | SYSTEMS UNDERSTANDING

How do we provide EOS data (pressure
and derivatives) to hydrodynamic codes

¢ instantaneously, and

e across a wide range of temperatures
Hydrodynamic codes and densities? 8 P
ICF modelling
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Currently-used approaches ), SASYS
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Average-atom models
Various flavours

Tabular interpolation
SESAME - empirical

First-principles methods
Density-functional theory
Quantum Monte-Carlo

Analytical methods
Thomas-Fermi theory
screened Hydrogen

- - Physics-enhanced neural networks for equation-of-state calculations Timothy Callow| 5



~
Contents ('.‘

CASVUS

1. Motivation

2. Average-atom models

3. Average-atom EOS results

4. Neural network methodology

5. Neural network EOS results

6. Comparison with other approaches

7. Conclusions

40> «F > «E>» <= = YAl

- . I Physics-enhanced neural networks for equation-of-state calculations Timothy Callow| 6



V=
(‘, CASVUS

Average-atom models: concept

7’ 4
/' AN ,/ AN
\ \
U
[ ] L] )‘ L]
® /
\ , N /
\ VAR ’
A Y 7’ \\ V2
e Ts—=
~ - ~
~ s ~
s N s N
/’ N N
° \ / \
L] )‘ L]
[ ] /
\ , N U
N VAR ’
N 2 N 7’
NS PR S _

e We want to map the left hand picture (complex system) to the one on the right
(simple system)
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Voronoi decomposition of space
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Voronoi decomposition of space By e som o

s | SYSTEMS UNDERSTANDING

e Each electron is “assigned” to the
nearest nucleus
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Expansion of coupling terms in Hamiltonian (i)

Under the assumption that the electron density in each cell is identical:

I:I:Nnx elat+ Zle‘

"Callow et al., PRR 4, 023055 (2022)
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Expansion of coupling terms in Hamiltonian (i) Cycnsys

s | SYSTEMS UNDERSTANDING

Under the assumption that the electron density in each cell is identical:

. . 223 W,
H—NnX He|’at+21_22’Rj‘

~

He| at is a single-atom Hamiltonian

l7|/j are couplings between nuclei and electrons in different cells

Perturbative expansion of W, terms: lowest order term W% = 0!

So Hamiltonian becomes that of a single (average) atom to lowest order’

"Callow et al., PRR 4, 023055 (2022)
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Boundary conditions ), SASYS

s | SYSTEMS UNDERSTANDING

e We implicitly account for interactions between neighbouring atoms via
boundary conditions

e We can impose smoothness of the electron density at the sphere’s edge:

dn(r)

2Rozsnyai, PRA 5, 1137 (1972); PRA 43, 3035 (1991)
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e We implicitly account for interactions between neighbouring atoms via
boundary conditions

e We can impose smoothness of the electron density at the sphere’s edge:

dn(r)

dr =0

r=Rws

e No unique way to satisfy the above relation, two most simple choices are
1. 0 = Xy(Rws) = anti-bonding MO? (“Dirichlet”)

2Rozsnyai, PRA5, 1137 (1972);, PRA 43, 3035 (1991)
el
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Boundary conditions (': CASUS

e We implicitly account for interactions between neighbouring atoms via
boundary conditions

e We can impose smoothness of the electron density at the sphere’s edge:

dn(r)
dr

=0

r:RWS

e No unique way to satisfy the above relation, two most simple choices are
1. 0 = Xy(Rws) = anti-bonding MO? (“Dirichlet”)

o an,(I’)
2. 0= —ar

r=Rws

= bonding MO (“Neumann")

2Rozsnyai, PRA 5, 1137 (1972); PRA 43, 3035 (1991)
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Boundary conditions: Band-structure model

n(r) =25 we > 21+ DfiulXin(r)*
k

n,l

The Dirichlet and Neumann b.c.s
define the limiting wave-functions of

each band
Solve KS equations for every energy
00 05 1.0 15 20 within the band
r (a0) Weightings w; from Hubbard DOS:
Radial density distribution (Al, Massacrier et al.,, PRR 3 023026 (2021)
5 g cm—3) for the band-structure
model
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DOS comparison between Massacrier AA and DFT-MD
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DOS for Carbon at T = 100 eV. Left: AA model. Right: DFT-MD results from
Bethkenhagen et al PRR 2, 023260 (2020)
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Pressure in average-atom models

e The total pressure is given as the sum of the ionic and electronic pressures
e |onic pressure is computed from the ideal gas law:

_mer

P.
on V
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Pressure in average-atom models Cycnsys

s | SYSTEMS UNDERSTANDING

e The total pressure is given as the sum of the ionic and electronic pressures
e |onic pressure is computed from the ideal gas law:
nRT

Pion = "0
on V

e Various methods are available for the electronic pressure. We use the

following four:
1. Finite differences:
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Pressure in average-atom models Cycnsys

s | SYSTEMS UNDERSTANDING

e The total pressure is given as the sum of the ionic and electronic pressures

e |onic pressure is computed from the ideal gas law:
nRT

Pion = "0
on V

e Various methods are available for the electronic pressure. We use the
following four:

2. Stress-tensor:

1 1 O¢y oy, 0%
Pe=3Tr1 3 2 0kRe | 5y B ~ Yhaman
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Pressure in average-atom models Cycnsys

s | SYSTEMS UNDERSTANDING

e The total pressure is given as the sum of the ionic and electronic pressures
e |onic pressure is computed from the ideal gas law:

nRT
4

Pion:

¢ Various methods are available for the electronic pressure. We use the
following four:
3. Virial theorem:

p_ 2T+ Een + Wi
° 3V
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Pressure in average-atom models Cycnsys

s | SYSTEMS UNDERSTANDING

e The total pressure is given as the sum of the ionic and electronic pressures

e |onic pressure is computed from the ideal gas law:
nRT

Pion = "0
on V

e Various methods are available for the electronic pressure. We use the
following four:

4. |deal approximation:
23/2 “00 63/2
O .
32 ve(Rws) 1+ ele=m/T
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Average-atom pressure results

e We test on the
first-principles dataset by
Militzer et al, calculated using
DFT-MD and PIMC methods:
PRE 103, 013203 (2021)

¢ In total we compare 2181
data points, spanning 11
elements
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Pressure results (ii) (‘ CASUS

SYSTEMS UNDERSTANDING

100 102 104 106 108
P (DFT-MD / PIMC) (GPa)
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Average-atom pressure results: summary Cycnsys
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All temperatures T > 10eV

MAPE3 33
MALE# 8.7
fo0? 75
fs® 63

3Mean absolute percentage error
“Mean absolute log error x100
>Percentage of results with < 20% error
SPercentage of results with < 5% error
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Average-atom pressure results: summary

All temperatures T > 10eV

MAPE? 33 2.6
MALES 8.7 1.1
f20° 75 98
f510 63 87

"Mean absolute percentage error
8Mean absolute log error x 100
Percentage of results with < 20% error
"Opercentage of results with < 5% error
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Neural network architecture Cycnsys
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Neural network methodology
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Neural network methodology
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Neural network methodology

Hyper-parameter &
feature selection

te
X1

te
X

xi = f1(x{;s))
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Neural network methodology
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Neural network methodology

Hyper-parameter &
feature selection
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Neural network methodology
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Neural network methodology
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Neural network methodology

Hyper-parameter &
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Neural network methodology
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Neural network methodology
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Neural network methodology

Model testing
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Neural network methodology

Model testing
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Neural network methodology

Model training

Eq (X5)

X3 f2(X5;s9)
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Neural network methodology

Model testing

Eq (X5)

(X5 s9) - fo(X;s9)
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Neural network methodology

Model testing

Eq (X5)

Ex(X5) «— fa(X5:s3) — f2(X;s3)
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Neural network methodology

Model training
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Neural network methodology

Model testing

Eq (X5)

E(X2) f1(X:s9)
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Neural network methodology

Model testing

Eq (X5)

E(X2) f3(X:s9)

E3(X5) «— f3(X5:s9)
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Neural network pressure results (i) (' CASUS
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Neural network vs average-atom pressure results
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Average-atom vs neural network pressure results: summary

All temps, AA  Alltemps, NN T >10eV,AA T > 10eV, AA

MAPE 33
MALE 8.7
f20 75
fs 63
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Average-atom vs neural network pressure results: summary

All temps, AA  Alltemps, NN T >10eV,AA T > 10eV, AA

MAPE 33 1.8
MALE 8.7 0.77
f20 75 99.6
fs 63 94
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Average-atom vs neural network pressure results: summary
=l

All temps,AA  Alltemps, NN T >10eV,AA T >10eV, AA

MAPE 33 1.8 2.6
MALE 8.7 0.77 1.1
f20 75 99.6 98
fs 63 94 87
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Average-atom vs neural network pressure results: summary , SASVS

EEEEEEEEEEEEEEEEEE

All temps, AA  Alltemps, NN T >10eV,AA T > 10eV, AA

MAPE 33 1.8 2.6 1.2
MALE 8.7 0.77 1.1 0.51
f20 75 99.6 98 100
fs 63 94 87 98
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Performance on out-of-distribution data ), SASVS

s | SYSTEMS UNDERSTANDING

e How does the neural network model perform (compared to the average-atom
model) on unseen elements?

e We test on the DFT-MD dataset of Ding and Hu, PoP 24(6):062702, 2017, which
contains Beryllium only, not present in the FPEOS dataset
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SYSTEMS UNDERSTANDING

Performance on out-of-distribution data

e How does the neural network model perform (compared to the average-atom
model) on unseen elements?

e We test on the DFT-MD dataset of Ding and Hu, PoP 24(6):062702, 2017, which
contains Beryllium only, not present in the FPEOS dataset
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Average-atom results for FP-Be dataset Cycnsys
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Neural network results for FP-Be dataset (' CASVUS
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Average-atom vs neural network pressure results: summary

All temps, AA  Alltemps, NN T >10eV,AA T >10eV,NN

MAPE 18
MALE 54
f20 79
fs 59
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Average-atom vs neural network pressure results: summary

All temps, AA  Alltemps, NN T >10eV,AA T >10eV,NN

MAPE 18 4.5
MALE 5.4 1.9
f20 79 99
fs 59 70
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Average-atom vs neural network pressure results: summary Yy St

All temps,AA  Alltemps, NN T >10eV,AA T > 10eV,NN

MAPE 18 4.5 2.8
MALE 5.4 1.9 1.2
f20 79 99 100
fs 59 70 80
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Average-atom vs neural network pressure results: summary Yy St

All temps, AA  Alltemps, NN T >10eV,AA T >10eV,NN

MAPE 18 4.5 2.8 3.4
MALE 5.4 1.9 1.2 1.5
f20 79 99 100 100
fs 59 70 80 75
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Comparison with direct interpolation of FPEOS data
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Comparison with direct interpolation of FPEOS data Ny Grerommcs

FPEOS (1) FPEOS(2) NN

MAPE 1.6
MALE 0.64
f20 99.7
fs 95
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Comparison with direct interpolation of FPEOS data

EEEEEEEEEEEEEEEEE

FPEOS (1) FPEOS(2) NN

MAPE 1.6 [1300]

MALE  0.64 1.9
f20 99.7 98
fs 95 93
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Comparison with direct interpolation of FPEOS data
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FPEOS (1) FPEOS(2) NN

MAPE 1.6 [1300] 1.9

MALE  0.64 1.9 0.77
f20 99.7 98 99.6
fs 95 93 94
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SESAME vs FPEOS (' CASVUS
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Comparison of AA and NN results with SESAME and QEOS

SESAME'" QEOS AA NN

MAPE 8.9
MALE 3.3
f20 88
fs 67

"Thanks to Katharina Falk (HZDR) for access to SESAME code
o
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Comparison of AA and NN results with SESAME and QEOS

SESAME' QEOS AA NN

MAPE 8.9 15
MALE 3.3 54
fa0 88 77
fs 67 37

"Thanks to Katharina Falk (HZDR) for access to SESAME code

- - Physics-enhanced neural networks for equation-of-state calculations Timothy Callow| 64



~
Comparison of AA and NN results with SESAME and QEOS Cychsys

SESAME'" QEOS AA NN

MAPE 8.9 15 7.6
MALE 3.3 54 28
fa0 88 77 90
fs 67 37 78

N.B. AA and NN results have changed since only H, C, Al and Si elements now
present!

"Thanks to Katharina Falk (HZDR) for access to SESAME code
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Comparison of AA and NN results with SESAME and QEOS Cychsys

SESAME' QEOS AA NN

MAPE 8.9 15 7.6 1.7
MALE 3.3 54 2.8 0.69
fao 88 77 90 995
fs 67 37 78 9

N.B. AA and NN results have changed since only H, C, Al and Si elements now
present!

"Thanks to Katharina Falk (HZDR) for access to SESAME code
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Key takeaways

1. Our aim: To build a global EOS model which can be used as input to
hydrodynamic codes used in ICF modelling
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Key takeaways

1. Our aim: To build a global EOS model which can be used as input to
hydrodynamic codes used in ICF modelling

2. Requirements: (extremely) fast and (good) accuracy, capable of modelling all
the way from ambient to hot dense conditions

3. Average-atom codes are sufficiently accurate above 10 eV, but cannot be relied
upon below that'?

4. Our average-atom-informed neural-network approach is highly accurate across
a wide range of temperatures

5. This approach has advantages over many current state-of-the-art alternatives
(empirical, analytical, or interpolation of first-principles data)

'12At present our AA code is not fast enough for inline hydro calculations, but we have solutions for
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