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ICF Modelling

EOS data

Hydrodynamic codes

ICF modelling

How do we provide EOS data (pressureand derivatives) to hydrodynamic codes
• instantaneously, and
• across awide range of temperaturesand densities?
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Currently-used approaches

Tabular interpolationSESAME - empirical

Average-atommodelsVarious flavours

First-principles methodsDensity-functional theoryQuantum Monte–Carlo
Analytical methodsThomas–Fermi theoryscreened Hydrogen
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Average-atommodels: concept

• We want to map the left hand picture (complex system) to the one on the right(simple system)
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Voronoi decomposition of space
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Voronoi decomposition of space

R J

xi
•

• Each electron is “assigned” to thenearest nucleus
• A transformation to the newco-ordinate space defined by RJ,xiJ ismade
• We shall expand in powers of
|yiJ| = |xi|

|RJ| ≤
12
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Expansion of coupling terms in Hamiltonian (i)

Under the assumption that the electron density in each cell is identical:

Ĥ = Nn ×
Ĥel,at + Z2

2
Nn∑
J=2

ŴJ
|RJ|



• Ĥel,at is a single-atom Hamiltonian
• ŴJ are couplings between nuclei and electrons in different cells
• Perturbative expansion of ŴJ terms: lowest order term Ŵ(0)

J = 0!
• So Hamiltonian becomes that of a single (average) atom to lowest order1

1Callow et al., PRR 4, 023055 (2022)
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Boundary conditions

• We implicitly account for interactions between neighbouring atoms viaboundary conditions
• We can impose smoothness of the electron density at the sphere’s edge:

dn(r)
dr

∣∣∣∣∣
r=RWS

= 0

• No unique way to satisfy the above relation, two most simple choices are

1. 0 = Xnl(RWS) ⇒ anti-bonding MO2 (“Dirichlet”)
2. 0 =

dXnl(r)dr
∣∣∣∣∣
r=RWS

⇒ bonding MO (“Neumann”)

2Rozsnyai, PRA 5, 1137 (1972); PRA 43, 3035 (1991)
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Boundary conditions: Band-structure model

Radial density distribution (Al,5 g cm−3) for the band-structuremodel

n(r) = 2∑
k
wk
∑
n,l

(2l + 1)fknl|Xknl(r)|2

The Dirichlet and Neumann b.c.sdefine the limiting wave-functions ofeach band
Solve KS equations for every energywithin the band
Weightings wk from Hubbard DOS:Massacrier et al., PRR 3 023026 (2021)
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DOS comparison between Massacrier AA and DFT-MD
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Pressure in average-atommodels

• The total pressure is given as the sum of the ionic and electronic pressures
• Ionic pressure is computed from the ideal gas law:

Pion =
nRT
V

• Various methods are available for the electronic pressure. We use thefollowing four:
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Pressure in average-atommodels

• The total pressure is given as the sum of the ionic and electronic pressures
• Ionic pressure is computed from the ideal gas law:

Pion =
nRT
V

• Various methods are available for the electronic pressure. We use thefollowing four:
1. Finite differences:

Pe = −∂F
∂V

∣∣∣∣∣
T
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Pressure in average-atommodels

• The total pressure is given as the sum of the ionic and electronic pressures
• Ionic pressure is computed from the ideal gas law:

Pion =
nRT
V

• Various methods are available for the electronic pressure. We use thefollowing four:
2. Stress-tensor:

Pe = 1
3 Tr

{1
2
∑
k
fk Re

(
∂ϕ∗

k
∂xi

∂ϕk
∂xj

− ϕ∗
k
∂2ϕ∗

k
∂xi∂xj

)}
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Pressure in average-atommodels

• The total pressure is given as the sum of the ionic and electronic pressures
• Ionic pressure is computed from the ideal gas law:

Pion =
nRT
V

• Various methods are available for the electronic pressure. We use thefollowing four:
3. Virial theorem:

Pe = 2T + Een +Wxc3V
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Pressure in average-atommodels

• The total pressure is given as the sum of the ionic and electronic pressures
• Ionic pressure is computed from the ideal gas law:

Pion =
nRT
V

• Various methods are available for the electronic pressure. We use thefollowing four:
4. Ideal approximation:

Pe = 23/2
3π2

∫ ∞

vs(RWS)
dϵ ϵ3/2

1+ e(ϵ−µ)/T .
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Average-atom pressure results

• We test on thefirst-principles dataset byMilitzer et al, calculated usingDFT-MD and PIMC methods:PRE 103, 013203 (2021)
• In total we compare 2181data points, spanning 11elements
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Average-atom pressure results (i)
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Pressure results (ii)
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Average-atom pressure results: summary

All temperatures T > 10 eV
MAPE3 33MALE4 8.7
f205 75
f56 63

3Mean absolute percentage error4Mean absolute log error ×1005Percentage of results with < 20% error6Percentage of results with < 5% error
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Average-atom pressure results: summary

All temperatures T > 10 eV
MAPE7 33 2.6MALE8 8.7 1.1
f209 75 98
f510 63 87

7Mean absolute percentage error8Mean absolute log error × 1009Percentage of results with < 20% error10Percentage of results with < 5% error
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Neural network architecture

DFT reference data Average-atom outputTemp, density
Atomic number

A1 A2 A3

h1 h2 h3

Ppred

Pref A i

Feed-forwardneural network

Physics-enhanced neural networks for equation-of-state calculations Timothy Callow 21



Neural network methodology

Data (Militzer FPEOS)
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Neural network methodology

Xte1

Xtr1
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Neural network methodology

Test data

Xte1

Xtr1 Training data
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Neural network methodology

Xte1

Xtr1

Hyper-parameter &feature selection
xte1

xtr1
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Neural network methodology

Xte1

Xtr1

Hyper-parameter &feature selection
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Physics-enhanced neural networks for equation-of-state calculations Timothy Callow 26



Neural network methodology

Xte1

Xtr1

Hyper-parameter &feature selection
f i(xte1 ; si1) → Ei[xte1 ]
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Neural network methodology

Xte1

Xtr1

Hyper-parameter &feature selection
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Neural network methodology

Xte1

Xtr1

Hyper-parameter &feature selection
xtr2 → f i(xtr2 ; si2)
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xte2
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Neural network methodology

Xte1

Xtr1

Hyper-parameter &feature selection

f i(xte2 ; si2) → Ei[xte2 ]
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Neural network methodology

Xte1

Xtr1

Hyper-parameter &feature selection

xtr3

xte3
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Neural network methodology

Xte1

Xtr1

Hyper-parameter &feature selection

xtr3 → f i(xtr3 ; si3)

xte3
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Neural network methodology

Xte1

Xtr1

Hyper-parameter &feature selection

f i(xte3 ; si3) → Ei[xte3 ]
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Neural network methodology

Xte1

Xtr1

Hyper-parameter &feature selection

{si1} ⇒ {Ēi}
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Neural network methodology

Xte1

Xtr1

Model training

f1(Xtr1 ; s01)
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Neural network methodology
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Model testing
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Neural network methodology

E1(Xte1 ) f1(Xte1 ; s01)

Xtr1

Model testing

f1(X; s01)
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Neural network methodology

E1(Xte1 ) Xtr2

Xtr2

Xte2

Model training

f2(Xtr2 ; s02)
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Neural network methodology
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Neural network methodology

E1(Xte1 )

E2(Xte2 )

Xte3

Xtr3

Model training

f3(Xtr3 ; s03)
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Neural network methodology
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Neural network pressure results (i)
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Neural network pressure results (ii)
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Neural network vs average-atom pressure results
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Average-atom vs neural network pressure results: summary

All temps, AA All temps, NN T > 10 eV, AA T > 10 eV, AA
MAPE 33MALE 8.7
f20 75
f5 63
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Average-atom vs neural network pressure results: summary

All temps, AA All temps, NN T > 10 eV, AA T > 10 eV, AA
MAPE 33 1.8MALE 8.7 0.77
f20 75 99.6
f5 63 94
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Average-atom vs neural network pressure results: summary

All temps,AA All temps, NN T > 10 eV, AA T > 10 eV, AA
MAPE 33 1.8 2.6MALE 8.7 0.77 1.1
f20 75 99.6 98
f5 63 94 87
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Average-atom vs neural network pressure results: summary

All temps, AA All temps, NN T > 10 eV, AA T > 10 eV, AA
MAPE 33 1.8 2.6 1.2MALE 8.7 0.77 1.1 0.51
f20 75 99.6 98 100
f5 63 94 87 98
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Performance on out-of-distribution data

• How does the neural network model perform (compared to the average-atommodel) on unseen elements?
• We test on the DFT-MD dataset of Ding and Hu, PoP 24(6):062702, 2017, whichcontains Beryllium only, not present in the FPEOS dataset
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Average-atom results for FP-Be dataset
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Neural network results for FP-Be dataset
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Average-atom vs neural network pressure results: summary

All temps, AA All temps, NN T > 10 eV, AA T > 10 eV, NN
MAPE 18MALE 5.4
f20 79
f5 59
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Average-atom vs neural network pressure results: summary

All temps, AA All temps, NN T > 10 eV, AA T > 10 eV, NN
MAPE 18 4.5MALE 5.4 1.9
f20 79 99
f5 59 70
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Average-atom vs neural network pressure results: summary

All temps,AA All temps, NN T > 10 eV, AA T > 10 eV, NN
MAPE 18 4.5 2.8MALE 5.4 1.9 1.2
f20 79 99 100
f5 59 70 80
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Average-atom vs neural network pressure results: summary

All temps, AA All temps, NN T > 10 eV, AA T > 10 eV, NN
MAPE 18 4.5 2.8 3.4MALE 5.4 1.9 1.2 1.5
f20 79 99 100 100
f5 59 70 80 75
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Comparison with direct interpolation of FPEOS data
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Comparison with direct interpolation of FPEOS data

FPEOS (1) FPEOS (2) NN
MAPE 1.6MALE 0.64
f20 99.7
f5 95
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Comparison with direct interpolation of FPEOS data

FPEOS (1) FPEOS (2) NN
MAPE 1.6 [1300]MALE 0.64 1.9
f20 99.7 98
f5 95 93
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Comparison with direct interpolation of FPEOS data

FPEOS (1) FPEOS (2) NN
MAPE 1.6 [1300] 1.9MALE 0.64 1.9 0.77
f20 99.7 98 99.6
f5 95 93 94
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SESAME vs FPEOS
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QEOS (analytical method) vs FPEOS
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Comparison of AA and NN results with SESAME and QEOS

SESAME11 QEOS AA NN
MAPE 8.9MALE 3.3
f20 88
f5 67

11Thanks to Katharina Falk (HZDR) for access to SESAME code
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Comparison of AA and NN results with SESAME and QEOS

SESAME11 QEOS AA NN
MAPE 8.9 15MALE 3.3 5.4
f20 88 77
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Comparison of AA and NN results with SESAME and QEOS

SESAME11 QEOS AA NN
MAPE 8.9 15 7.6MALE 3.3 5.4 2.8
f20 88 77 90
f5 67 37 78

N.B. AA and NN results have changed since only H, C, Al and Si elements nowpresent!

11Thanks to Katharina Falk (HZDR) for access to SESAME code
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Comparison of AA and NN results with SESAME and QEOS

SESAME11 QEOS AA NN
MAPE 8.9 15 7.6 1.7MALE 3.3 5.4 2.8 0.69
f20 88 77 90 99.5
f5 67 37 78 96

N.B. AA and NN results have changed since only H, C, Al and Si elements nowpresent!

11Thanks to Katharina Falk (HZDR) for access to SESAME code
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Key takeaways

1. Our aim: To build a global EOS model which can be used as input tohydrodynamic codes used in ICF modelling
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Key takeaways

1. Our aim: To build a global EOS model which can be used as input tohydrodynamic codes used in ICF modelling
2. Requirements: (extremely) fast and (good) accuracy, capable of modelling allthe way from ambient to hot dense conditions
3. Average-atom codes are sufficiently accurate above 10 eV, but cannot be reliedupon below that12
4. Our average-atom-informed neural-network approach is highly accurate acrossa wide range of temperatures
5. This approach has advantages over many current state-of-the-art alternatives(empirical, analytical, or interpolation of first-principles data)

12At present our AA code is not fast enough for inline hydro calculations, but we have solutions forthis Physics-enhanced neural networks for equation-of-state calculations Timothy Callow 66
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