Physics-enhanced neural networks for equation-of-state calculations

Max Born Symposium "Many particle systems under extreme conditions" **04.12.2023 // Timothy Callow**

www.casus.science

SPEASORE

Federal Ministr of Education and Research

FÜR WISSENSCHAFT UND KUNST

1. Motivation

- 2. Average-atom models
- 3. Average-atom EOS results
- 4. Neural network methodology
- 5. Neural network EOS results
- Comparison with other approaches
 Conclusions

Physics-enhanced neural networks for equation-of-state calculations

Timothy Callow | 3

▶ 클 ∽ ↔ Timothy Callow| 3

ICF Modelling

How do we provide EOS data (pressure and derivatives) to hydrodynamic codes

- instantaneously, and
- across a wide range of temperatures and densities?

4 D N 4 D N 4 D N 4 D

Currently-used approaches

1. Motivation

- 2. Average-atom models
- 3. Average-atom EOS results
- 4. Neural network methodology
- 5. Neural network EOS results
- Comparison with other approaches
 Conclusions

Average-atom models: concept

• We want to map the left hand picture (complex system) to the one on the right (simple system)

イロト イボト イヨト イヨ

Voronoi decomposition of space

Physics-enhanced neural networks for equation-of-state calculations

・ロト ・四ト ・ヨト ・ヨト

Voronoi decomposition of space

• Each electron is "assigned" to the nearest nucleus

A D > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 1 4 3

Physics-enhanced neural networks for equation-of-state calculations

Voronoi decomposition of space

- Each electron is "assigned" to the nearest nucleus
- A transformation to the new co-ordinate space defined by **R**_{*j*}, **x**_{*ij*} is made

• We shall expand in powers of $|\mathbf{y}_{ij}| = rac{|\mathbf{x}_i|}{|\mathbf{R}_j|} \le rac{1}{2}$

Expansion of coupling terms in Hamiltonian (i)

Under the assumption that the electron density in each cell is identical:

$$\hat{H} = N_{\mathsf{n}} \times \left\{ \hat{H}_{\mathsf{el},\mathsf{at}} + \frac{Z^2}{2} \sum_{J=2}^{N_{\mathsf{n}}} \frac{\hat{W}_J}{|\mathbf{R}_J|} \right\}$$

¹Callow *et al.*, PRR **4**, 023055 (2022)

Expansion of coupling terms in Hamiltonian (i)

Under the assumption that the electron density in each cell is identical:

$$\hat{H} = N_{n} \times \left\{ \hat{H}_{el,at} + \frac{Z^{2}}{2} \sum_{J=2}^{N_{n}} \frac{\hat{W}_{J}}{|\mathbf{R}_{J}|} \right\}$$

- $\hat{H}_{el,at}$ is a *single-atom* Hamiltonian
- \hat{W}_{J} are *couplings* between nuclei and electrons in different cells
- Perturbative expansion of \hat{W}_{J} terms: lowest order term $\hat{W}_{I}^{(0)} = 0!$
- So Hamiltonian becomes that of a single (average) atom to lowest order¹

¹Callow *et al.*, PRR **4**, 023055 (2022)

Boundary conditions

- We *implicitly* account for interactions between neighbouring atoms via boundary conditions
- We can impose smoothness of the electron density at the sphere's edge:

$$\left.\frac{\mathrm{d}n(r)}{\mathrm{d}r}\right|_{r=R_{\rm WS}}=0$$

²Rozsnyai, PRA **5**, 1137 (1972); PRA **43**, 3035 (1991)

Boundary conditions

- We *implicitly* account for interactions between neighbouring atoms via boundary conditions
- We can impose smoothness of the electron density at the sphere's edge:

$$\left.\frac{\mathrm{d}n(r)}{\mathrm{d}r}\right|_{r=R_{\rm WS}}=0$$

- No unique way to satisfy the above relation, two most simple choices are
 - 1. $0 = X_{nl}(R_{WS}) \Rightarrow$ anti-bonding MO² ("Dirichlet")

²Rozsnyai, PRA **5**, 1137 (1972); PRA **43**, 3035 (1991)

Boundary conditions

- We *implicitly* account for interactions between neighbouring atoms via boundary conditions
- We can impose smoothness of the electron density at the sphere's edge:

$$\left.\frac{\mathrm{d}n(r)}{\mathrm{d}r}\right|_{r=R_{\rm WS}}=0$$

- No unique way to satisfy the above relation, two most simple choices are
 - 1. $0 = X_{nl}(R_{WS}) \Rightarrow$ anti-bonding MO² ("Dirichlet")

2.
$$0 = \frac{dX_{nl}(r)}{dr} \bigg|_{r=R_{WS}} \Rightarrow \text{bonding MO ("Neumann")}$$

²Rozsnyai, PRA **5**, 1137 (1972); PRA **43**, 3035 (1991)

Boundary conditions: Band-structure model

Radial density distribution (Al, 5 g cm⁻³) for the band-structure model

$$n(r) = 2\sum_{k} w_{k} \sum_{n,l} (2l+1) f_{knl} |X_{knl}(r)|^{2}$$

The Dirichlet and Neumann b.c.s define the *limiting wave-functions* of each band

Solve KS equations for *every* energy within the band

Weightings *w_k* from *Hubbard* DOS: Massacrier *et al.*, PRR **3** 023026 (2021)

DOS comparison between Massacrier AA and DFT-MD

DOS for Carbon at T = 100 eV. Left: AA model. Right: DFT-MD results from Bethkenhagen *et al* PRR **2**, 023260 (2020)

- The total pressure is given as the sum of the ionic and electronic pressures
- Ionic pressure is computed from the *ideal gas law*:

$$P_{\rm ion} = \frac{nRT}{V}$$

- The total pressure is given as the sum of the ionic and electronic pressures
- Ionic pressure is computed from the *ideal gas law*:

$$P_{\rm ion} = rac{nRT}{V}$$

- Various methods are available for the electronic pressure. We use the following four:
 - 1. Finite differences:

$$P_{\mathsf{e}} = -\frac{\partial F}{\partial V}\Big|_{T}$$

イロト イヨト イヨト

- The total pressure is given as the sum of the ionic and electronic pressures
- Ionic pressure is computed from the *ideal gas law*:

$$P_{\rm ion} = rac{nRT}{V}$$

- Various methods are available for the electronic pressure. We use the following four:
 - 2. Stress-tensor:

$$P_{e} = \frac{1}{3} \operatorname{Tr} \left\{ \frac{1}{2} \sum_{k} f_{k} \operatorname{Re} \left(\frac{\partial \phi_{k}^{*}}{\partial x_{i}} \frac{\partial \phi_{k}}{\partial x_{j}} - \phi_{k}^{*} \frac{\partial^{2} \phi_{k}^{*}}{\partial x_{i} \partial x_{j}} \right) \right\}$$

イロト イロト イモト イモト

- The total pressure is given as the sum of the ionic and electronic pressures
- Ionic pressure is computed from the *ideal gas law*:

$$P_{\rm ion} = rac{nRT}{V}$$

- Various methods are available for the electronic pressure. We use the following four:
 - 3. Virial theorem:

$$P_{\rm e} = \frac{2T + E_{\rm en} + W_{\rm xc}}{3V}$$

- The total pressure is given as the sum of the ionic and electronic pressures
- Ionic pressure is computed from the *ideal gas law*:

$$P_{\rm ion} = rac{nRT}{V}$$

- Various methods are available for the electronic pressure. We use the following four:
 - 4. Ideal approximation:

$$P_{\rm e} = \frac{2^{3/2}}{3\pi^2} \int_{\nu_{\rm s}(R_{\rm WS})}^{\infty} {\rm d}\epsilon \, \frac{\epsilon^{3/2}}{1 + e^{(\epsilon - \mu)/T}} \, .$$

1. Motivation

- 2. Average-atom models
- 3. Average-atom EOS results
- 4. Neural network methodology
- 5. Neural network EOS results
- Comparison with other approaches
 Conclusions

Average-atom pressure results

- We test on the first-principles dataset by Militzer et al, calculated using DFT-MD and PIMC methods: PRE 103, 013203 (2021)
- In total we compare 2181 data points, spanning 11 elements

イロト イヨト イヨト

Average-atom pressure results

- We test on the first-principles dataset by Militzer et al, calculated using DFT-MD and PIMC methods: PRE 103, 013203 (2021)
- In total we compare 2181 data points, spanning 11 elements

• • • • • • • • • •

Physics-enhanced neural networks for equation-of-state calculations

Average-atom pressure results (i)

▶ 클 ∽ ↔ Timothy Callow| 16

Pressure results (ii)

	All temperatures	<i>T</i> > 10 eV
MAPE ³	33	
MALE ⁴	8.7	
$f_{20}{}^{5}$	75	
$f_{5}{}^{6}$	63	

³Mean absolute percentage error
 ⁴Mean absolute log error ×100
 ⁵Percentage of results with < 20% error
 ⁶Percentage of results with < 5% error

イロト イヨト イヨト イヨト

	All temperatures	<i>T</i> > 10 eV
MAPE ⁷	33	2.6
MALE ⁸	8.7	1.1
$f_{20}{}^{9}$	75	98
$f_{5}{}^{10}$	63	87

 7 Mean absolute percentage error 8 Mean absolute log error \times 100 9 Percentage of results with < 20% error 10 Percentage of results with < 5% error

A D K A D K A D K A D

1. Motivation

- 2. Average-atom models
- 3. Average-atom EOS results
- 4. Neural network methodology
- 5. Neural network EOS results
- Comparison with other approaches
 Conclusions

Neural network architecture

Physics-enhanced neural networks for equation-of-state calculations

Timothy Callow | 21

Neural network methodology

Physics-enhanced neural networks for equation-of-state calculations

Neural network methodology

Physics-enhanced neural networks for equation-of-state calculations

Timothy Callow | 23

Physics-enhanced neural networks for equation-of-state calculations

Physics-enhanced neural networks for equation-of-state calculations

▶ 클 ∽ 즉 Timothy Callow| 25

Physics-enhanced neural networks for equation-of-state calculations

▶ 클 ∽ ↔ Timothy Callow| 26

Physics-enhanced neural networks for equation-of-state calculations

▶ 클 ∽ ↔ Timothy Callow| 27

Physics-enhanced neural networks for equation-of-state calculations

▶ 클 ∽ <? Timothy Callow| 28

Physics-enhanced neural networks for equation-of-state calculations

▶ 클 ∽ 즉 Timothy Callow| 29

Physics-enhanced neural networks for equation-of-state calculations

▶ 클 ∽ 즉 Timothy Callow| 30

Physics-enhanced neural networks for equation-of-state calculations

Timothy Callow | 31

Physics-enhanced neural networks for equation-of-state calculations

・ロト ・四ト ・ヨト ・ヨト

Physics-enhanced neural networks for equation-of-state calculations

▶ 클 ∽ ↔ Timothy Callow| 33

Physics-enhanced neural networks for equation-of-state calculations

Physics-enhanced neural networks for equation-of-state calculations

타 클 · 오 오 아 Timothy Callow | 35

Physics-enhanced neural networks for equation-of-state calculations

Physics-enhanced neural networks for equation-of-state calculations

Timothy Callow | 37

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Model training \mathbf{X}_{2}^{tr} $\mathbf{X}_{2}^{\text{te}}$ $f_2(\mathbf{X}_2^{\text{tr}};\mathbf{s}_2^0)$ \mathbf{X}_{2}^{tr}

 $E_1(\mathbf{X}_1^{\text{te}})$

Physics-enhanced neural networks for equation-of-state calculations

▶ 클 ∽ 즉 Timothy Callow| 38

Physics-enhanced neural networks for equation-of-state calculations

ト ヨ シへへ Timothy Callow | 39

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Physics-enhanced neural networks for equation-of-state calculations

Timothy Callow | 40

∃ 990

< ロ > < 部 > < き > < き > ...

Physics-enhanced neural networks for equation-of-state calculations

► E ∽ ९ C

Physics-enhanced neural networks for equation-of-state calculations

▶ 클 ∽ ↔ Timothy Callow| 42

Physics-enhanced neural networks for equation-of-state calculations

▶ 클 ∽ 즉 Timothy Callow| 43

・ロト ・四ト ・ヨト ・ヨト

1. Motivation

- 2. Average-atom models
- 3. Average-atom EOS results
- 4. Neural network methodology
- 5. Neural network EOS results
- Comparison with other approaches
 Conclusions

Neural network pressure results (i)

Neural network pressure results (ii)

▶ 클 ∽ 즉 Timothy Callow| 46

Neural network vs average-atom pressure results

▶ 클 ∽ 즉 Timothy Callow| 47

	All temps, AA	All temps, NN	<i>T</i> > 10 eV, AA	<i>T</i> > 10 eV, AA
MAPE	33			
MALE	8.7			
f_{20}	75			
f_5	63			

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

	All temps, AA	All temps, NN	<i>T</i> > 10 eV, AA	<i>T</i> > 10 eV, AA
MAPE	33	1.8		
MALE	8.7	0.77		
f_{20}	75	99.6		
f_5	63	94		

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

	All temps,AA	All temps, NN	<i>T</i> > 10 eV, AA	<i>T</i> > 10 eV, AA
MAPE	33	1.8	2.6	
MALE	8.7	0.77	1.1	
f_{20}	75	99.6	98	
f_5	63	94	87	

< ロ > < 部 > < き > < き > ...

	All temps, AA	All temps, NN	<i>T</i> > 10 eV, AA	<i>T</i> > 10 eV, AA
MAPE	33	1.8	2.6	1.2
MALE	8.7	0.77	1.1	0.51
f_{20}	75	99.6	98	100
f_5	63	94	87	98

∃ 990

<ロ> <四> <四> <四> <四> <四> <四</p>

Performance on out-of-distribution data

- How does the neural network model perform (compared to the average-atom model) on **unseen** elements?
- We test on the DFT-MD dataset of Ding and Hu, PoP **24**(6):062702, 2017, which contains Beryllium only, not present in the FPEOS dataset

イロト イヨト イヨト

Performance on out-of-distribution data

- How does the neural network model perform (compared to the average-atom model) on **unseen** elements?
- We test on the DFT-MD dataset of Ding and Hu, PoP **24**(6):062702, 2017, which contains Beryllium only, not present in the FPEOS dataset

イロト イヨト イヨト イヨト

Average-atom results for FP-Be dataset

Neural network results for FP-Be dataset

	All temps, AA	All temps, NN	<i>T</i> > 10 eV, AA	<i>T</i> > 10 eV, NN
MAPE	18			
MALE	5.4			
f_{20}	79			
f_5	59			

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

	All temps, AA	All temps, NN	<i>T</i> > 10 eV, AA	<i>T</i> > 10 eV, NN
MAPE	18	4.5		
MALE	5.4	1.9		
f_{20}	79	99		
f_5	59	70		

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

	All temps,AA	All temps, NN	<i>T</i> > 10 eV, AA	<i>T</i> > 10 eV, NN
MAPE	18	4.5	2.8	
MALE	5.4	1.9	1.2	
f_{20}	79	99	100	
f_5	59	70	80	

	All temps, AA	All temps, NN	<i>T</i> > 10 eV, AA	<i>T</i> > 10 eV, NN
MAPE	18	4.5	2.8	3.4
MALE	5.4	1.9	1.2	1.5
f_{20}	79	99	100	100
f_5	59	70	80	75

<ロ> <四> <四> <四> <四> <四> <四</p>

1. Motivation

- 2. Average-atom models
- 3. Average-atom EOS results
- 4. Neural network methodology
- 5. Neural network EOS results
- Comparison with other approaches
 Conclusions

	FPEOS (1)	FPEOS (2)	NN
MAPE	1.6		
MALE	0.64		
f_{20}	99.7		
f_5	95		

Physics-enhanced neural networks for equation-of-state calculations

< ロ > < 四 > < 回 > < 回 > < 回 > <</p>

	FPEOS (1)	FPEOS (2)	NN
MAPE	1.6	[1300]	
MALE	0.64	1.9	
f_{20}	99.7	98	
\bar{f}_5	95	93	

Physics-enhanced neural networks for equation-of-state calculations

< ロ > < 部 > < き > < き > ...

	FPEOS (1)	FPEOS (2)	NN
MAPE	1.6	[1300]	1.9
MALE	0.64	1.9	0.77
f_{20}	99.7	98	99.6
f_5	95	93	94

Physics-enhanced neural networks for equation-of-state calculations

< ロ > < 四 > < 回 > < 回 > < 回 > <</p>

SESAME vs FPEOS

QEOS (analytical method) vs FPEOS

	SESAME ¹¹	QEOS	AA	NN
MAPE	8.9			
MALE	3.3			
f_{20}	88			
f_5	67			

¹¹Thanks to Katharina Falk (HZDR) for access to SESAME code

Physics-enhanced neural networks for equation-of-state calculations

Timothy Callow | 64

イロト イポト イヨト イヨ

	SESAME ¹¹	QEOS	AA	NN
MAPE	8.9	15		
MALE	3.3	5.4		
f_{20}	88	77		
f_5	67	37		

¹¹Thanks to Katharina Falk (HZDR) for access to SESAME code

Physics-enhanced neural networks for equation-of-state calculations

Timothy Callow | 64

イロト イポト イヨト イヨ

	SESAME ¹¹	QEOS	AA	NN
MAPE	8.9	15	7.6	
MALE	3.3	5.4	2.8	
f_{20}	88	77	90	
f_5	67	37	78	

N.B. AA and NN results have changed since only H, C, Al and Si elements now present!

¹¹Thanks to Katharina Falk (HZDR) for access to SESAME code

	SESAME ¹¹	QEOS	AA	NN
MAPE	8.9	15	7.6	1.7
MALE	3.3	5.4	2.8	0.69
f_{20}	88	77	90	99.5
f_5	67	37	78	96

N.B. AA and NN results have changed since only H, C, Al and Si elements now present!

¹¹Thanks to Katharina Falk (HZDR) for access to SESAME code

1. Motivation

- 2. Average-atom models
- 3. Average-atom EOS results
- 4. Neural network methodology
- 5. Neural network EOS results
- 6. Comparison with other approaches
- 7. Conclusions

1. Our aim: To build a global EOS model which can be used as input to hydrodynamic codes used in ICF modelling

・ロト ・四ト ・ヨト ・ヨト

- 1. Our aim: To build a global EOS model which can be used as input to hydrodynamic codes used in ICF modelling
- 2. Requirements: (extremely) fast and (good) accuracy, capable of modelling all the way from ambient to hot dense conditions

イロト イヨト イヨト

- 1. Our aim: To build a global EOS model which can be used as input to hydrodynamic codes used in ICF modelling
- 2. Requirements: (extremely) fast and (good) accuracy, capable of modelling all the way from ambient to hot dense conditions
- 3. Average-atom codes are sufficiently accurate above 10 eV, but cannot be relied upon below that¹²

¹²At present our AA code is not fast enough for inline hydro calculations, but we have solutions for this

- 1. Our aim: To build a global EOS model which can be used as input to hydrodynamic codes used in ICF modelling
- 2. Requirements: (extremely) fast and (good) accuracy, capable of modelling all the way from ambient to hot dense conditions
- 3. Average-atom codes are sufficiently accurate above 10 eV, but cannot be relied upon below that¹²
- 4. Our average-atom-informed neural-network approach is highly accurate across a wide range of temperatures

¹²At present our AA code is not fast enough for inline hydro calculations, but we have solutions for this

- 1. Our aim: To build a global EOS model which can be used as input to hydrodynamic codes used in ICF modelling
- 2. Requirements: (extremely) fast and (good) accuracy, capable of modelling all the way from ambient to hot dense conditions
- 3. Average-atom codes are sufficiently accurate above 10 eV, but cannot be relied upon below that¹²
- 4. Our average-atom-informed neural-network approach is highly accurate across a wide range of temperatures
- 5. This approach has advantages over many current state-of-the-art alternatives (empirical, analytical, or interpolation of first-principles data)

¹²At present our AA code is not fast enough for inline hydro calculations, but we have solutions for

References and thanks

Thanks to my collaborators:

- "The Boss" Attila Cangi (CASUS)
- "DFT guy" Eli Kraisler (Hebrew University of Jerusalem)
- "Plasma guy" Jan Nikl (CASUS)
- "Best colleague ever" ChatGPT (OpenAl)

(日)

References and thanks

Thanks to my collaborators:

- "The Boss" Attila Cangi (CASUS)
- "DFT guy" Eli Kraisler (Hebrew University of Jerusalem)
- "Plasma guy" Jan Nikl (CASUS)
- "Best colleague ever" ChatGPT (OpenAl)
- Paper: search "Timothy Callow" on arXiv, first result

4 D K 4 B K 4 B K 4 B

References and thanks

Thanks to my collaborators:

- "The Boss" Attila Cangi (CASUS)
- "DFT guy" Eli Kraisler (Hebrew University of Jerusalem)
- "Plasma guy" Jan Nikl (CASUS)
- "Best colleague ever" ChatGPT (OpenAl)
- Paper: search "Timothy Callow" on arXiv, first result
- Code: search "atoMEC" on GitHub

A D K A D K A D K A D

www.casus.science

TECHNISCHE UNIVERSITAT

SPEASORE3 IN THE

Federal Ministry of Education and Research STAATSMINISTERIUM FÜR WISSENSCHAFT UND KUNST

