T-Matrix Theory of Strongly Coupled QGP

Ralf Rapp

Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, TX, USA

Polish-German WE-Heraeus Seminar & Max Born Symposium Many-Particle Systems under Extreme Conditions Dec. 3-6, 2023, Görlitz (Germany)

1.) Introduction

- Nonperturbative QCD Force + sQGP
- 2.) <u>Thermodynamic T-Matrix</u>
 - Selfconsistent Quantum Many-Body Theory
 - Input Potential + Constraints from Lattice QCD
- 3.) Hamiltonian Approach to sQGP Structure
 - Thermodynamic Potential + EoS
 - Spectral + Transport Properties

4.) Heavy-Flavor Transport in Heavy-Ion Collisions

- QCD Matter in the Lab
- Open HF Phenomenology

1.1 Quantum Chromodynamics in Vacuum

 $\mathcal{L}_{QCD} = \bar{q}(i\gamma^{\mu}D_{\mu} - \mathcal{M}_{q})q - \frac{1}{A}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$

[Gross, Politzer +Wilczek '73]

et al '05]

- $Q^2 \leq 1 \; GeV^2 \rightarrow$ "strong QCD"
- Confinement
- mass generation $(M_p \approx 1 \ GeV)$

- Non-perturbative for $r \ge 0.25 fm$
- Operational definition of confinement
- Well-calibrated force describes charm-/bottom-onium spectroscopy

1.2 QCD Matter and In-Medium Force

• "Change" in degrees of freedom above T~160 MeV

- $\mathbf{F}_{\mathbf{Q}\bar{\mathbf{Q}}} = \mathbf{U}_{\mathbf{Q}\bar{\mathbf{Q}}} \mathbf{T} \mathbf{S}_{\mathbf{Q}\bar{\mathbf{Q}}}$
- Non-perturbative above T_c
- Connection between QCD Matter and in-medium forces?
- Heavy-quark transport as a microscopic probe ⇒ Deduce structure of strongly coupled QGP

1.3 Strongly Coupled Quark-Gluon Plasma

- ⇔ Quantum liquid with transport coefficients near conjectured lower bounds
- Microscopic calculation of transport coefficients should obey quantum-lower bounds
- Bulk medium should encode strong-coupling properties \rightarrow universality? $\mathcal{D}_{s}(2\pi T) \sim (4\pi)\eta/s \sim \sigma_{el}/T$
- Large scattering rates \rightarrow large collisional widths
 - \rightarrow broad spectral functions \rightarrow off-shell (quantum) effects

1.) Introduction

- Nonperturbative QCD Force + sQGP
- 2.) <u>Thermodynamic T-Matrix</u>
 - Selfconsistent Quantum Many-Body Theory
 - Input Potential + Constraints from Lattice QCD
- 3.) Hamiltonian Approach to sQGP Structure
 - Thermodynamic Potential + EoS
 - Spectral + Transport Properties

4.) <u>Heavy-Flavor Transport in Heavy-Ion Collisions</u>

- QCD Matter in the Lab
- Open HF Phenomenology

- Born approximation (weak coupling): $T_{Qi} \approx V_{Qi}$
- **Strong** coupling → resummation:

$$\mathbf{T}_{ji} = \mathbf{V}_{ji} + \int \mathbf{V}_{ji} \mathbf{G}_j \mathbf{G}_i \mathbf{T}_{ji}$$

- Dyson equation: $G_i = 1 / [\omega \omega_k \Sigma_i(\omega, k)]$
- Parton **self-energies** → **self-consistency**:

$$-\Sigma_{Q} - =$$

• **Vacuum**: Cornell potential \rightarrow HQ spectroscopy

• In-medium: $V_{\mathcal{C}} + V_{\mathcal{S}} = -\frac{4}{3}\alpha_s \frac{e^{-m_d r}}{r} - \frac{\sigma e^{-m_s r - (c_b m_s r)^2}}{m_s}$ [TAMU '04-'23] \rightarrow constrain screening masses $\mathbf{m}_{d,s}$ using lattice-QCD data

2.2 Potential Extraction from Lattice QCD

• Free energy: $F_{Q\bar{Q}}(r_1 - r_2) = -\frac{1}{\beta} \ln \left(\int_{-\infty}^{\infty} d\omega \sigma (\omega, r_1 - r_2) e^{-\beta \omega} \right)$

• Quarkonium Spectral Function:

$$\sigma(\omega,r) = \frac{1}{\pi} \frac{(V+\Sigma)_I(\omega)}{(\omega-(V+\Sigma)_R)^2 + (V+\Sigma)_I^2(\omega)}$$

- Weakly Coupled Scenario: potential close to F, $\Gamma_0 \sim 0.1$ GeV
- SCS: remnants of confining force, $\Gamma_Q \sim 0.6$ GeV; Quantum effects + self-consistency limit coupling strength

1.) Introduction

- Nonperturbative QCD Force + sQGP
- 2.) <u>Thermodynamic T-Matrix</u>
 - Selfconsistent Quantum Many-Body Theory
 - Input Potential + Constraints from Lattice QCD
- 3.) Hamiltonian Approach to sQGP Structure
 - Thermodynamic Potential + EoS
 - Spectral + Transport Properties

4.) <u>Heavy-Flavor Transport in Heavy-Ion Collisions</u>

- QCD Matter in the Lab
- Open HF Phenomenology

3.) Hamiltonian Approach to QGP

• In-Medium Parton Hamiltonian with 2-body interactions

$$H = \sum \varepsilon_i(\mathbf{p})\psi_i^{\dagger}(\mathbf{p})\psi_i(\mathbf{p}) + \psi_i^{\dagger}(\frac{\mathbf{P}}{2} - \mathbf{p})\psi_j^{\dagger}(\frac{\mathbf{P}}{2} + \mathbf{p})V_{ij}^a\psi_j(\frac{\mathbf{P}}{2} + \mathbf{p}')\psi_i(\frac{\mathbf{P}}{2} - \mathbf{p}')$$

- effective parton masses $\varepsilon_i(\mathbf{p}) = \sqrt{M_i^2 + \mathbf{p}^2}$

• Interaction: Cornell potential with relativistic corrections $V_{ij}^{a}(\mathbf{p},\mathbf{p}') = \mathcal{R}_{ij}^{\mathcal{C}}\mathcal{F}_{a}^{\mathcal{C}}V_{\mathcal{C}}(\mathbf{p}-\mathbf{p}') + \mathcal{R}_{ij}^{\mathcal{S}}\mathcal{F}_{a}^{\mathcal{S}}V_{\mathcal{S}}(\mathbf{p}-\mathbf{p}')$

- as used in heavy-quark sector

• Implement into Brueckner / Luttinger-Ward-Baym approach

3.2 QGP Equation of State + Spectral Functions

Thermodynamic Potential (2-PI) Selfconsistent SFs

Lutttinger-Ward Functional

$$\Omega = \mp \frac{-1}{\beta} \sum_{n} \operatorname{Tr} \{ \ln(-G^{-1}) + \Sigma G \} \underbrace{\pm \Phi}$$

$$G = G_0 + G_0 \Sigma G \qquad \Sigma = GT \qquad T = V + VGGT$$

$$\Phi = \frac{-1}{\beta} \sum_{n,\nu} \operatorname{Tr} \{ \frac{1}{2\nu} (\frac{-1}{\beta})^{\nu} [(-\beta)^{\nu} \Sigma_{\nu}(G)] G \}$$

$$(\bigcirc + \bigcirc + \bigcirc + \cdots + \bigcirc)$$

- Fully off-shell resummed Luttinger-Ward functional (!)
 → allows for dynamically emerging hadronic resonances
- Fit "bare" quark + gluon masses

3.3 QGP Equation of State + Degrees of Freedom

• Confining force near $T_c: \Rightarrow$ soft partons melt, $\Gamma_q \ge m_q$ \Rightarrow broad hadronic resonances emerge

<u>3.4 Transport Coefficients + Strong-Coupling Limit</u>

Shear Viscosity and Heavy-Quark Diffusion

- Strongly coupled: $(2\pi T) \mathcal{D}_{s} \sim (4\pi) \eta/s$
- Perturbative: $(2\pi T) \mathcal{D}_{s} \sim 5/2 (4\pi) \eta/s$
- Transition as **T** increases

1.) Introduction

- Nonperturbative QCD Force + sQGP
- 2.) <u>Thermodynamic T-Matrix</u>
 - Selfconsistent Quantum Many-Body Theory
 - Input Potential + Constraints from Lattice QCD
- 3.) Hamiltonian Approach to sQGP Structure
 - Thermodynamic Potential + EoS
 - Spectral + Transport Properties

4.) <u>Heavy-Flavor Transport in Heavy-Ion Collisions</u>

- QCD Matter in the Lab
- Open HF Phenomenology

4.1 QCD Matter in the Lab: Heavy-Ion Collisions

Heavy-Quark Probe of QCD Medium

- "Brownian markers" of coupling strength: m_Q >> T
- Requires transport approach

4.2 Heavy-Flavor Transport in QGP

 $p^{2} \sim m_{Q} T \gg q^{2} \sim T^{2} \Rightarrow Fokker-Planck Equation:$ $\frac{\partial}{\partial t} f_{Q}(t,p) = \gamma \frac{\partial}{\partial p_{i}} [p_{i}f_{Q}(t,p)] + D_{p}\Delta_{\vec{p}} f_{Q}(t,p)$ thermalization rate momentum diffusion coefficient $\gamma p = \int d^{3}q w_{Q}(q,p) q \qquad D_{p} = \int d^{3}q w_{Q}(q,p) q^{2}$ $\sim \int |T_{0i}|^{2} (1-\cos\theta) f^{i}$

- Thermal relaxation time $\tau = 1/\gamma$
- Spatial diffusion constant: $\mathcal{D}_s = T / \gamma(p=0) m_Q$
- Key ingredient: heavy-light scattering amplitude T_{Qi}

4.3 Charm-Quark Scattering in QGP

- Broad **D**-mesons emerge near T_c \rightarrow connects diffusion + hadronization!
- $\tau_{\rm c} = 1/\gamma_{\rm c} \approx 3 \text{ fm/c}$, $\mathcal{D}_{\rm s} (2\pi T) \approx 2$
- Off-shell (quantum) effects critical!

[Liu,He+RR '19]

4.4 Charm-Hadron Spectra in Heavy-Ion Collisions

- Charm quarks dragged along with fireball
 ⇒ "flow bump" in R_{AA} + large v₂
 ⇒ strong coupling near T_c [M.He+RR '19]
- Diffusion coefficient $\mathcal{D}_{s}(2\pi T) \sim 2$ near T_{c}

Topical Collaboration in Nuclear Theory: HEavy Flavor TheorY (HEFTY) for QCD Matter

5.) <u>Summary</u>

- Quantum Many-Body Theory of sQGP:
 - Accounts for key aspects of **strong coupling**: nonperturbative forces, resummation, quantum effects (large widths)
 - Input parameters constrained by lattice QCD, recover vacuum limit
- QGP structure driven by remnants of **long-range confining force**
 - \rightarrow **melts** long-wavelength quasi-partons
 - forms hadronic bound states near T_c
 - generates liquid properties (small $\mathcal{D}_s, \eta/s, \ldots$)
 - quantum effects ubiquitous
- Heavy quarks serve as **Brownian Markers** of **sQGP** in HICs
- Self-consistency essential for quantum bounds!?