

Hydrodynamic simulations of superdense fluids

Pasi Huovinen

Incubator of Scientific Excellence—Centre for Simulations of Superdense Fluids University of Wrocław

Many particle systems under extreme conditions

December 4, 2023, Görlitz, Germany

- 12 building blocks of matter (+antiparticles)
- observed matter consists only of three of these (u, d, e)

What happens when you compress nuclear matter to very high temperatures and densities?

• phase transition to quark-gluon plasma, QGP

P. Huovinen @ WE-Heraeus Seminar & Max Born Symposium, Dec 4, 2023

Collisions of heavy nuclei: Little Bang

- Brookhaven National Laboratory (BNL): RHIC, Au + Au at $\sqrt{s_{NN}} = 200$ GeV
- CERN LHC,

Pb + Pb at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV

Fluid dynamics

local conservation of energy, momentum and baryon number:

$$\partial_{\mu}T^{\mu
u}(x)=0$$
 and $\partial_{\mu}N^{\mu}(x)=0$

$$T^{\mu\nu} = (\epsilon + P + \Pi)u^{\mu}u^{\nu} - (P + \Pi)g^{\mu\nu} + \pi^{\mu\nu}$$
$$N^{\mu} = nu^{\mu} + \nu^{\mu}$$

local, macroscopic variables: energy density $\epsilon(x)$ pressure P(x)flow velocity $u^{\mu}(x)$

matter characterized by: equation of state $P = P(T, \{\mu_i\})$ transport coefficients $\eta = \eta(T, \{\mu_i\})$ $\zeta = \zeta(T, \{\mu_i\})$ $\kappa = \kappa(T, \{\mu_i\})$

Evolution equations

• four coupled differential equations, $\mu \in \{0, 1, 2, 3\}$:

$$\frac{\partial}{\partial t}T^{0\mu} = -\frac{\partial}{\partial x}T^{1\mu} - \frac{\partial}{\partial y}T^{2\mu} - \frac{\partial}{\partial z}T^{3\mu}$$

which can be cast in the form

$$\frac{\partial}{\partial t}\rho_0 + \nabla \cdot (\vec{v}\rho) = X$$

- must be solved numerically
- can be solved using conventional algorithms of fluid dynamics

usually

- fixed grid
- finite volume with flux correction

Boundary conditions

- spatial: expansion to vacuum \Rightarrow vacuum "far away"
- temporal, early: <u>after</u> primary collisions!
- temporal, late: once the system has cooled

Dissipative relativistic fluid dynamics

$$T^{\mu\nu} = (\epsilon + P + \Pi)u^{\mu}u^{\nu} - (P + \Pi)g^{\mu\nu} + \pi^{\mu\nu}$$

 $\pi^{\mu\nu}$: shear-stress tensor, Π : bulk pressure

relativistic Navier-Stokes: $\pi^{\mu\nu} = 2\eta \nabla^{\langle \mu} u^{\nu \rangle}$

- parabolic equations of motion!
- unstable and acausal

Dissipative relativistic fluid dynamics

$$T^{\mu\nu} = (\epsilon + P + \Pi)u^{\mu}u^{\nu} - (P + \Pi)g^{\mu\nu} + \pi^{\mu\nu}$$

 $\pi^{\mu\nu}$: shear-stress tensor, Π : bulk pressure

Israel-Stewart: $\pi^{\mu\nu}$ independent dynamical variable

$$\left\langle u^{\lambda}\partial_{\lambda}\pi^{\mu\nu}\right\rangle = \frac{\pi^{\mu\nu}_{\rm NS} - \pi^{\mu\nu}}{\tau_{\pi}} - \frac{4}{3}\pi^{\mu\nu}\partial_{\lambda}u^{\lambda} + \cdots$$

- η : shear viscosity coefficient
- τ_{π} : shear relaxation time, known for massless particles
- solved numerically
- finite differencing, same grid than for equations of motion

Elliptic flow v_2

Elliptic flow v_2

spatial anisotropy \rightarrow final azimuthal momentum anisotropy

Anisotropy in coordinate space + rescattering
 Anisotropy in momentum space

sensitive to speed of sound $c_s^2 = \partial p / \partial e$ and shear viscosity η

• Quantified with Fourier expansion of momentum distribution:

 $\frac{\mathrm{d}N}{\mathrm{d}y\,p_T\mathrm{d}p_T\,\mathrm{d}\phi} = \frac{1}{2\pi} \frac{\mathrm{d}N}{\mathrm{d}y\,p_T\mathrm{d}p_T} (1 + 2\mathbf{v_1}(y, p_T)\cos\phi + 2\mathbf{v_2}(y, p_T)\cos 2\phi + \cdots)$

Success of ideal hydrodynamics

- p_T -averaged v_2 of charged hadrons:
- points: data, boxes: hydrodynamical calculations

• works beautifully in central and semi-central collisions

Dissipative hydrodynamics

• Luzum & Romatschke, Phys.Rev.C78:034915,2008

• $\eta/s = 0.08$ favoured

Modeling problem

Model parameters (input): $\vec{x} = (x_1, ..., x_n)$ $(\tau_0, \epsilon_{\text{init}}, \eta/s, T_{\text{dec}}...)$ $\downarrow \downarrow$ Model output $\vec{y} = (y_1, ..., y_m) \Leftrightarrow$ Experimental values \vec{y}^{exp} $(dN/dy, \langle p_T \rangle, v_n, ...)$

- Which values of input parameters \vec{x} give the best reproduction of experimental output \vec{y}^{exp} ?
- What is the level of uncertainty of these values?

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

• **Prior knowledge:** Range of parameter values

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

• Likelihood: $\mathcal{L}(\vec{x}) \propto \exp\left(-\frac{1}{2}(\vec{y}(\vec{x}) - \vec{y}^{\exp})\Sigma^{-1}(\vec{y}(\vec{x}) - \vec{y}^{\exp})^T\right)$, where Σ is the covariance matrix

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

- Likelihood: $\mathcal{L}(\vec{x}) \propto \exp\left(-\frac{1}{2}(\vec{y}(\vec{x}) \vec{y}^{\exp})\Sigma^{-1}(\vec{y}(\vec{x}) \vec{y}^{\exp})^T\right)$, where Σ is the covariance matrix
- \bullet evaluation of the likelihood function $\mathcal{O}(10^8)$ runs. . .
- use Gaussian emulator instead
 stochastic, non-parametric interpolation of the model

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

- Likelihood: $\mathcal{L}(\vec{x}) \propto \exp\left(-\frac{1}{2}(\vec{y}(\vec{x}) \vec{y}^{\exp})\Sigma^{-1}(\vec{y}(\vec{x}) \vec{y}^{\exp})^T\right)$, where Σ is the covariance matrix
- \bullet evaluation of the likelihood function $\mathcal{O}(10^8)$ runs. . .
- use Gaussian emulator instead
 stochastic, non-parametric interpolation of the model
- Sample the likelihood function using Markov chain Monte Carlo = random walk in parameter space constrained to favour high likelihood

 \rightarrow distribution of Markov chain steps \equiv probability distribution

P. Huovinen @ WE-Heraeus Seminar & Max Born Symposium, Dec 4, 2023

 $(\eta/s)(T)$

Auvinen et al., PRC 102, 044911 (2020)

• $0.12 < \eta/s < 0.23$ when $150 \lesssim T/{
m MeV} \lesssim 220$

P. Huovinen @ WE-Heraeus Seminar & Max Born Symposium, Dec 4, 2023

Challenges

1. primary collisions overlap with secondary collisions

Challenges

- 1. lower multiplicity \implies smaller system \implies larger deviations from equilibrium?
- 2. primary collisions overlap with secondary collisions

3-fluid dynamics

$$0 = \partial_{\mu}T^{\mu\nu}$$

3-fluid dynamics

$$0 = \partial_{\mu} T^{\mu\nu}$$
$$= \partial_{\mu} T^{\mu\nu}_{t} + \partial_{\mu} T^{\mu\nu}_{p} + \partial_{\mu} T^{\mu\nu}_{fb}$$

 $T_{\rm t}^{\mu
u} =$ target fluid $T_{\rm p}^{\mu
u} =$ projectile fluid $T_{\rm fb}^{\mu
u} =$ fireball fluid

- target and projectile represent colliding nucleons
- fireball (loosely) represents produced particles

3-fluid dynamics

$$\begin{aligned} \partial_{\mu} T_{t}^{\mu\nu}(x) &= -F_{t}^{\nu}(x) + F_{ft}^{\nu}(x) \\ \partial_{\mu} T_{p}^{\mu\nu}(x) &= -F_{p}^{\nu}(x) + F_{fp}^{\nu}(x) \\ \partial_{\mu} T_{fb}^{\mu\nu}(x) &= F_{p}^{\nu}(x) + F_{t}^{\nu}(x) - F_{fp}^{\nu}(x) - F_{ft}^{\nu}(x) \end{aligned}$$

- interaction between target and projectile: friction terms $-F_{\rm t}^{\nu}(x)$ and $-F_{\rm p}^{\nu}(x)$
- interaction between fireball and target/projectile: friction terms $F_{\rm fp}^{\nu}(x)$ and $F_{\rm ft}^{\nu}(x)$

Summary

- at (extremely) large temperatures and densities hadrons "melt" to quarkgluon plasma where quarks and gluons are the basic degrees of freedom
- quark-gluon plasma behaves like fluid with very low specific shear viscosity
- models for lower collision energies/higher baryon densities under construction