Understanding electronic correlations in warm dense quantum plamas

T. Dornheim^{1,2}, Zh. Moldabekov^{1,2}, M. Böhme^{1,2,3}, J. Vorberger¹, S. Schwalbe^{1,2}, Th Gawne^{1,2},
 K. Ramakrishna^{1,2,3}, T. Döppner⁴, F. Graziani⁴, M. MacDonald⁴, P. Tolias⁵, A. Baczewski⁶, Th. Preston⁷,
 D. Chapman⁸, X. Shao⁹, M. Pavanello⁹, M. Bonitz¹⁰, D. Kraus^{11,2}

¹Helmholtz-Zentrum Dresden-Rossendorf (HZDR), ²CASUS, ³TU Dresden, ⁴LLNL, ⁵KTH Stockholm, ⁶Sandia NL, ⁷European XFEL, ⁸First Light Fusion (UK), ⁹Rutgers University (NJ), ¹⁰Kiel University, ¹¹Rostock university

Part I: Introduction 10 $r_s=10$ 0.1 Ξ Classical plasma 9 ് 8 Red giar Solar core 7 log₁₀ T / K = (Hu.et al., White dwar T=100eV 6 T=10eV 5 Giant planets 4 Earth core Ideal 3 8=0. Fermi gas Metals 2 26 18 20 22 24 28 30 log₁₀ n / cm⁻³

Taken from: **T. Dornheim**, Zh. Moldabekov, K. Ramakrishna, P. Tolias, A. Baczewski, D. Kraus, Th. Preston, D. Chapman et al, Phys. Plasmas **30**, 032705 (2023)

Part I: Introduction

Part II: Electronic density response

of warm dense matter

Taken from: M. Böhme, Zh. Moldabekov, J. Vorberger, and **T. Dornheim**, Phys. Rev. Lett. **129**, 066402 (2022)

Part I: Introduction

<u>Part II:</u> Electronic density response of warm dense matter

Part III: Imaginary-time correlation functions and XRTS

Taken from: **T. Dornheim**, Zh. Moldabekov, M. Böhme, J. Vorberger, P. Tolias, F. Graziani, and T. Döppner (in preparation)

Warm Dense Matter (WDM)

• Matter under extreme density / temperature ubiquitous throughout our universe

 $r_s \sim \theta \sim \Gamma \sim 1$

 \rightarrow r_s=d/a_B, density parameter, $\theta = k_B T/E_F$, $\Gamma = W/E_{kin}$

<u>Taken from:</u> **T. Dornheim**, Zh. Moldabekov, K. Ramakrishna, P. Tolias, A. Baczewski, D. Kraus, Th. Preston, D. Chapman et al, Phys. Plasmas **30**, 032705 (2023)

Warm Dense Matter (WDM)

• Matter under extreme density / temperature ubiquitous throughout our universe

r_s ~ θ ~ Γ ~ 1

- \rightarrow r_s=d/a_B, density parameter, θ =k_BT/E_F, Γ =W/E_{kin}
- Examples: giant planet interiors, brown dwarfs

Warm Dense Matter (WDM)

• Matter under extreme density / temperature ubiquitous throughout our universe

r_s ~ θ ~ Γ ~ 1

- \rightarrow r_s=d/a_B, density parameter, $\theta = k_B T/E_F$, $\Gamma = W/E_{kin}$
- Examples: giant planet interiors, brown dwarfs
- WDM highly important for technological applications:
- \rightarrow Inertial confinement fusion, etc.

National Ignition Facility (NIF)

Taken from: Lawrence Livermore National Laboratory

Warm Dense Matter (WDM)

• Matter under extreme density / temperature ubiquitous throughout our universe

National Ignition Facility (NIF)

throughout our universe		2
r _s ~ θ ~ Γ ~ 1		
\rightarrow r _s =d/a _B , density parameter,		
• <u>Examples:</u> glant pla	I routinely realized in large research	
	facilities around the globe!	
WDM highly important for tech	nological applications:	
\rightarrow Inertial confinement fusion, et		

Taken from: Lawrence Livermore National Laboratory

But: Rigorous WDM theory indispensable

• <u>Diagnostics</u>: parameters like *T*, *n*, *Z*, etc. cannot be measured and have to be inferred from theory

 \rightarrow X-ray Thomson scattering (XRTS)

Isochorically heated graphite at LCLS (Stanford)

<u>Taken from:</u> D. Kraus *et al.*, *Plasma Phys. Control. Fusion* **61**, 014015 (2019)

But: Rigorous WDM theory indispensable

• <u>Diagnostics</u>: parameters like *T*, *n*, *Z*, etc. cannot be measured and have to be inferred from theory

- \rightarrow X-ray Thomson scattering (XRTS)
- WDM theory notoriously challenging

r_s ~ θ ~ Γ ~ 1

 \rightarrow intricate interplay of:

1) Coulomb coupling

But: Rigorous WDM theory indispensable

• <u>Diagnostics</u>: parameters like *T*, *n*, *Z*, etc. cannot be measured and have to be inferred from theory

- \rightarrow X-ray Thomson scattering (XRTS)
- WDM theory notoriously challenging

r_s ~ θ ~ Γ ~ 1

- \rightarrow intricate interplay of:
 - 1) Coulomb coupling
 - 2) quantum degeneracy effects

But: Rigorous WDM theory indispensable

- <u>Diagnostics</u>: parameters like *T*, *n*, *Z*, etc. cannot be measured and have to be inferred from theory
- \rightarrow X-ray Thomson scattering (XRTS)
- WDM theory notoriously challenging

 $r_s \sim \theta \sim \Gamma \sim 1$

- \rightarrow intricate interplay of:
 - 1) Coulomb coupling
 - 2) quantum degeneracy effects
 - 3) thermal excitations

But: Rigorous WDM theory indispensable

But: Rigorous WDM theory indispensable

Ab-initio Quantum Monte Carlo (QMC) simulations

Problem:

• **Density functional theory (DFT)** etc. require external input about XC-effects

 \rightarrow finite *T*: XC-<u>free</u> energy f_{xc}

Solution:

• Quantum Monte Carlo methods in principle allow for exact solution of quantum many-body problems <u>without</u> any empirical input

• Finite T: Path Integral Monte Carlo (PIMC)

Taken from: **T. Dornheim**, S. Groth, and M. Bonitz, *Contrib. Plasma Phys.* **59**, e201800157 (2019)

Part I: XC-free energy of UEG

S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz, PRL 119, 135001 (2017)

Impact on thermal DFT simulation of warm dense hydrogen

Example:

Hydrogen at T=65,000K

 $r_s = 2$

(a) Ground-state LDA by PerdewAnd Zunger, PRB (1980) [PZ](b) our thermal LDA[GDSMFB]

Taken from: K. Ramakrishna, **T. Dornheim**, and J. Vorberger, *Phys. Rev. B* **101**, 195129 (2020)

Part I: XC-free energy of UEG

S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz, PRL 119, 135001 (2017)

Impact on thermal DFT simulation of warm dense hydrogen

Example:

Part I: Introduction

<u>Part II:</u> Electronic density response of warm dense matter

Part III: Imaginary-time correlation functions and XRTS

Taken from: M. Böhme, Zh. Moldabekov, J. Vorberger, and **T. Dornheim**, Phys. Rev. Lett. **129**, 066402 (2022)

Density response functions, local field correction

• Dynamic density response function

$$\chi(q,\omega) = \frac{\chi_0(q,\omega)}{1 - \frac{4\pi}{q^2} [1 - G(q,\omega)] \chi_0(q,\omega)}$$

- $\rightarrow \chi_0(q,\omega)$ ideal density response function
- → $G(q, \omega)$ dynamic local field correction, <u>containing all</u> <u>electronic XC-effects</u>

 $G(q,\omega) = -K_{xc}(q,\omega)/v(q)$

- <u>Static limit</u>: Exact QMC results for $\chi(q) := \chi(q, 0)$, G(q)
- Extensive PIMC data for LFC G(q) for ~50 r_{s} - θ combinations

Neural net representation covering full WDM regime.

θ

Taken from: **T. Dornheim**, J. Vorberger, S. Groth, N. Hoffmann, Zh. Moldabekov, and M. Bonitz, *J. Chem. Phys.* **151**, 194104 (2019)

0

b)

G

2.5

1.5

0.5

2

1

0

 q/q_F

Exact PIMC simulation of H snaphots

•Use PIMC to solve electronic problem in the potential of fixed protons

PIMC snapshot of hydrogen at rs=2, θ =1

Green orbs: protons Blue paths: quantum degenerate electrons

Exact PIMC simulation of H snaphots

•Use PIMC to solve electronic problem in the potential of fixed protons

Advantage #1: nanostructure not averared out

 \rightarrow study electronic localization around protons

Exact PIMC simulation of H snaphots

•Use PIMC to solve electronic problem in the potential of fixed protons

Advantage #1: nanostructure not averared out

 \rightarrow study electronic localization around protons

$$\hat{H}_{\mathbf{q},A} = \hat{H} + 2A \sum_{l=1}^{N} \cos\left(\mathbf{q} \cdot \hat{\mathbf{r}}_{l}\right)$$

 \rightarrow study spatially resolved density response

1.2 X 0.8 0.8 0.8 X 0.6 × 2 0.6 0.6 0.4 0 Δn/n₀ ∆n/n 0.2 \succ \geq 0.4 0.4 -2 -0.2 0.2 0.2 -0.4 x X -0.6 A=0.1 A = 0.10 -0.8 0 0.8 0.2 0.6 0.2 0.6 0.8 0.4 0.4 0 0 Ζ Ζ 15 2.5 X 10 0.8 0.8 1.5 X 5 0.6 0.6 ∆n/n₀ ∆n/n \geq 0 \geq 0.5 0.4 0.4 -5 X 0 0.2 0.2 -10 -0.5 X X X A=0.1 -15 0 0 -1

0.2

0

0.4

z

0.6

0.8

1

Induced electronic density of H at rs=4, $\theta=1$

Taken from: T. Dornheim, M. Böhme, Zh. Moldabekov, and J. Vorberger, Phys. Rev. E 108, 035204 (2023)

0.8

1

0.6

0.4

7

0.2

Exact PIMC simulation of H snaphots

•Use PIMC to solve electronic problem in the potential of fixed protons

Advantage #1: nanostructure not averared out

 \rightarrow study electronic localization around protons

$$\hat{H}_{\mathbf{q},A} = \hat{H} + 2A \sum_{l=1}^{N} \cos\left(\mathbf{q} \cdot \hat{\mathbf{r}}_{l}\right)$$

 \rightarrow study spatially resolved density response

Advantage #2: Direct comparison to DFT

Induced electronic density of H at rs=4, $\theta=1$

Taken from: T. Dornheim, M. Böhme, Zh. Moldabekov, and J. Vorberger, Phys. Rev. E 108, 035204 (2023)

Exact PIMC results for XC kernel of H

•Harmonically perturbed Hamiltonian:

$$\hat{H}_{\mathbf{q},A} = \hat{H} + 2A \sum_{l=1}^{N} \cos\left(\mathbf{q} \cdot \hat{\mathbf{r}}_{l}\right)$$

 \rightarrow direct access to linear+nonlinear density response

Electronic density response of H at $\theta = 1$

Max Böhme (PhD student)

$\langle \hat{\rho}_{\mathbf{q}} \rangle_{q,A} = \chi^{(1)}(q)A + \chi^{(1,\text{cubic})}(q)A^3$ -0.01 r_s=2 $r_s = 4$ X -0.015 ¥ Ă (a) (b -0.005 -0.02 X -0.01 Δρ/A -0.025 -0.03 PIMC (H) -0.015 -×-PIMC (UEG) >---O----LRT limit -0.035 Taken from: M. Böhme, Zh. Moldabekov, J. Vorberger, cubic fit -0.02 and T. Dornheim, Phys. Rev. Lett. 129, 066402 0.5 1.5 0.2 0.4 0.6 0.8 2 0 1 1 (2022)А А

and a state of the state of the state of

Ð

Ŷ

₫

3

2

 q/q_F

Exact PIMC results for XC kernel of H

•Harmonically perturbed Hamiltonian:

$$\hat{H}_{\mathbf{q},A} = \hat{H} + 2A \sum_{l=1}^{N} \cos\left(\mathbf{q} \cdot \hat{\mathbf{r}}_{l}\right)$$

 \rightarrow direct access to linear+nonlinear density response

$$\langle \hat{\rho}_{\mathbf{q}} \rangle_{q,A} = \chi^{(1)}(q)A + \chi^{(1,\mathrm{cubic})}(q)A^3$$

Invert density response to get XC kernel / LFC

$$\chi(\mathbf{q}) = \frac{\chi_0(\mathbf{q})}{1 + \left[v(\mathbf{q}) + K_{\mathrm{xc}}(\mathbf{q})\right]\chi_0(\mathbf{q})}$$

$$G(q) = -\frac{4\pi}{q^2} K_{\rm xc}(q)$$

Taken from: M. Böhme, Zh. Moldabekov, J. Vorberger, and T. Dornheim, Phys. Rev. Lett. 129, 066402 (2022)

XC kernel from **DFT** without functional derivatives

•Harmonically perturbed Hamiltonian:

$$\hat{H}_{\mathbf{q},A} = \hat{H} + 2A \sum_{l=1}^{N} \cos\left(\mathbf{q} \cdot \hat{\mathbf{r}}_{l}\right)$$

 \rightarrow direct access to linear+nonlinear density response

$$\langle \hat{\rho}_{\mathbf{q}} \rangle_{q,A} = \chi^{(1)}(q)A + \chi^{(1,\text{cubic})}(q)A^3$$

<u>Taken from:</u> Zh. Moldabekov, M. Böhme, J. Vorberger, D. Blaschke and **T. Dornheim**, JCTC **19**, 1286-1299 (2023)

Zh. Moldabekov (PostDoc)

Part I: Introduction

<u>Part II:</u> Electronic density response of warm dense matter

Part III: Imaginary-time correlation functions and XRTS

Taken from: **T. Dornheim**, Zh. Moldabekov, M. Böhme, J. Vorberger, P. Tolias, F. Graziani, and T. Döppner (in preparation)

X-ray Thomson scattering (XRTS)

• <u>Standard way</u>: construct a model for $S(q,\omega)$, convolve with instrument function $R(\omega)$, fit to XRTS signal $I(q,\omega)$

$$I(\mathbf{q},\omega) = S(\mathbf{q},\omega) \circledast R(\omega)$$

Isochorically heated graphite at LCLS (Stanford)

<u>Taken from:</u> D. Kraus *et al.*, *Plasma Phys. Control. Fusion* **61**, 014015 (2019)

X-ray Thomson scattering (XRTS)

• <u>Standard way</u>: construct a model for $S(q,\omega)$, convolve with instrument function $R(\omega)$, fit to XRTS signal $I(q,\omega)$

 $I(\mathbf{q},\omega) = S(\mathbf{q},\omega) \circledast R(\omega)$

- Frequency domain:
- \rightarrow no direct access to physical information
- \rightarrow approximate theoretical models

X-ray Thomson scattering (XRTS)

• <u>Standard way</u>: construct a model for $S(q,\omega)$, convolve with instrument function $R(\omega)$, fit to XRTS signal $I(q,\omega)$

 $I(\mathbf{q},\omega) = S(\mathbf{q},\omega) \circledast R(\omega)$

- Frequency domain:
- \rightarrow no direct access to physical information
- \rightarrow approximate theoretical models

• Imaginary-time domain:

- \rightarrow direct access to physics, e.g. T, ω_{p}
- \rightarrow exact QMC simulations

$$\mathcal{L}\left[S(\mathbf{q},\omega)\right] = \int_{-\infty}^{\infty} \mathrm{d}\omega \ e^{-\tau\omega} \ S(\mathbf{q},\omega)$$

X-ray Thomson scattering (XRTS)

• <u>Standard way</u>: construct a model for $S(q,\omega)$, convolve with instrument function $R(\omega)$, fit to XRTS signal $I(q,\omega)$

 $I(\mathbf{q},\omega) = S(\mathbf{q},\omega) \circledast R(\omega)$

- Frequency domain:
- \rightarrow no direct access to physical information
- \rightarrow approximate theoretical models

• Imaginary-time domain:

- \rightarrow direct access to physics, e.g. T, ω_{p}
- \rightarrow exact QMC simulations

$$\mathcal{L}\left[S(\mathbf{q},\omega)\right] = \frac{\mathcal{L}\left[S(\mathbf{q},\omega) \circledast R(\omega)\right]}{\mathcal{L}\left[R(\omega)\right]}$$

Application I: Model-free temperature diagnostics

- Detailed balance in the τ-domain:
- \rightarrow works for all wave numbers
- \rightarrow no explicit resolution of plasmon required

$$S(\mathbf{q},-\omega) = S(\mathbf{q},\omega)e^{-\beta\omega}$$

 \rightarrow symmetry around $\tau = (2T)^{-1}$

Taken from: T. Dornheim et al, Phys. Plasmas 30, 042707 (2023)

Application I: Model-free temperature diagnostics

• Detailed balance in the τ-domain:

- \rightarrow works for all wave numbers
- \rightarrow no explicit resolution of plasmon required

$$S(\mathbf{q},-\omega) = S(\mathbf{q},\omega)e^{-\beta\omega}$$

 \rightarrow symmetry around $\tau = (2T)^{-1}$

 \rightarrow very robust with respect to noise

 \rightarrow no models / simulations etc.

Temperature of warm dense Be [Glenzer (2007)]

Taken from: T. Dornheim, M. Böhme, D. Kraus, T. Döppner, T. Preston, Zh. Moldabekov, and J. Vorberger, Nature Comm. 13, 7911 (2022)

Application I: Model-free temperature diagnostics

Detailed balance in the τ-domain:

- \rightarrow works for all wave numbers
- \rightarrow no explicit resolution of plasmon required

$$S(\mathbf{q},-\omega) = S(\mathbf{q},\omega)e^{-\beta\omega}$$

 \rightarrow symmetry around $\tau = (2T)^{-1}$

 \rightarrow very robust with respect to noise

 \rightarrow no models / simulations etc.

Temperature of strongly compressed Be@NIF [Döppner et al., (2023)]

Taken from: M. Böhme, L. Fletcher, T. Döppner, D. Kraus, A. Baczewski, Th. Preston, ..., and T. Dornheim, arXiv:2306.17653 (submitted)

Model-free normalization of XRTS experiments:

Measured XRTS intensity is given by

 $I(\mathbf{q},\omega) = A S_{ee}(\mathbf{q},\omega) \circledast R(\omega)$

(with A being an a-priori unknown normalization factor)

Reference: T. Dornheim, T. Döppner, A. Baczewski, P. Tolias, M. Böhme, Zh. Moldabekov, et al., arXiv:2305.15305 (submitted)

Model-free normalization of XRTS experiments:

Measured XRTS intensity is given by

$$I(\mathbf{q},\omega) = A S_{ee}(\mathbf{q},\omega) \circledast R(\omega)$$

(with A being an a-priori unknown normalization factor)

 \rightarrow Laplace transform gives **<u>unnormalized</u>** ITCF

$$AF_{ee}(\mathbf{q},\tau) = A\mathcal{L}\left[S_{ee}(\mathbf{q},\omega)\right] = \frac{\mathcal{L}\left[I(\mathbf{q},\omega)\right]}{\mathcal{L}\left[R(\omega)\right]}$$

Reference: T. Dornheim, T. Döppner, A. Baczewski, P. Tolias, M. Böhme, Zh. Moldabekov, et al., arXiv:2305.15305 (submitted)

Model-free normalization of XRTS experiments:

Measured XRTS intensity is given by

$$I(\mathbf{q},\omega) = A S_{ee}(\mathbf{q},\omega) \circledast R(\omega)$$

(with A being an a-priori unknown normalization factor)

 \rightarrow Laplace transform gives **<u>unnormalized</u>** ITCF

$$AF_{ee}(\mathbf{q},\tau) = A\mathcal{L}\left[S_{ee}(\mathbf{q},\omega)\right] = \frac{\mathcal{L}\left[I(\mathbf{q},\omega)\right]}{\mathcal{L}\left[R(\omega)\right]}$$

• Absolute knowledge of ITCF is required for practical applications, e.g.

$$\chi(\mathbf{q},0) = -n \int_0^\beta \mathrm{d}\tau \ F_{ee}(\mathbf{q},\tau) \qquad \text{and} \qquad S_{ee}(\mathbf{q}) = F_{ee}(\mathbf{q},0)$$

Reference: T. Dornheim, T. Döppner, A. Baczewski, P. Tolias, M. Böhme, Zh. Moldabekov, et al., arXiv:2305.15305 (submitted)

Model-free normalization of XRTS experiments:

• <u>Solution</u>: f-sum rule in the imaginary time $M_1^S = \hbar q^2/2m_{
m e}$

$$M_{\alpha}^{S} = \int_{-\infty}^{\infty} \mathrm{d}\omega \ S_{ee}(\mathbf{q},\omega) \ \omega^{\alpha}$$

$$M_{\alpha}^{S} = \frac{(-1)^{\alpha}}{\hbar^{\alpha}} \left. \frac{\partial^{\alpha}}{\partial \tau^{\alpha}} F_{ee}(\mathbf{q}, \tau) \right|_{\tau=0}$$

→ frequency moments of $S(q,\omega)$ are given by derivatives Of the ITCF around $\tau=0$

• Determine the normalization from the first derivative of the ITCF

Reference: T. Dornheim, T. Döppner, A. Baczewski, P. Tolias, M. Böhme, Zh. Moldabekov, et al., arXiv:2305.15305 (submitted)

Example: uniform electron gas

Model-free normalization of XRTS experiments:

• <u>Solution:</u> f-sum rule in the imaginary time $M_1^S = \hbar q^2/2m_{
m e}$

$$M_{\alpha}^{S} = \int_{-\infty}^{\infty} \mathrm{d}\omega \ S_{ee}(\mathbf{q},\omega) \ \omega^{\alpha}$$

$$M_{\alpha}^{S} = \frac{\left(-1\right)^{\alpha}}{\hbar^{\alpha}} \left. \frac{\partial^{\alpha}}{\partial \tau^{\alpha}} F_{ee}(\mathbf{q},\tau) \right|_{\tau=0}$$

→ frequency moments of $S(q,\omega)$ are given by derivatives Of the ITCF around $\tau=0$

• Determine the normalization from the first derivative of the ITCF

Reference: T. Dornheim, T. Döppner, A. Baczewski, P. Tolias, M. Böhme, Zh. Moldabekov, et al., arXiv:2305.15305 (submitted)

Example: Be@NIF (Döppner et al)

Work in progress: large PIMC simulations with exponential speed-up

Taken from: **T. Dornheim**, P. Tolias, S. Groth, Zh. Moldabekov, J. Vorberger, and B. Hirshberg, J. Chem. Phys. **159**, 164113 (2023)

→ <u>Can do:</u> large systems at moderate to weak quantum degeneracy

→ <u>Can't do:</u> low temperatures, strongly quantum degenerate regime

Perfectly suited for low-Z materials at the NIF!

Work in progress: large PIMC simulations with exponential speed-up

<u>Reference:</u> **T. Dornheim**, Zh. Moldabekov, M. Böhme, J. Vorberger, P. Tolias, D. Kraus, F. Graziani, and T. Döppner, in preparation

→ <u>Can do:</u> large systems at moderate to weak quantum degeneracy

→ <u>Can't do:</u> low temperatures, strongly quantum degenerate regime

Perfectly suited for low-Z materials at the NIF!

Work in progress: large PIMC simulations with exponential speed-up

Example: Strongly compressed Be at NIF

<u>Reference</u>: **T. Dornheim**, Zh. Moldabekov, M. Böhme, J. Vorberger, P. Tolias, D. Kraus, F. Graziani, and T. Döppner, in preparation

→ <u>Can do:</u> large systems at moderate to weak quantum degeneracy

→ <u>Can't do:</u> low temperatures, strongly quantum degenerate regime

Perfectly suited for low-Z materials at the NIF!

 $N_{Be}=25 \longrightarrow N_{Be}=10 \longrightarrow N_{B$

10

θ=75°

1.05

1

0.95

0.9

0.85

0.8

0.75

0

2

4

6

q [Å⁻¹]

8

S_{ee}(q)

→ exact PIMC results for NIF conditions

→ study e-e correlations (not possible with DFT)

 \rightarrow all spectral information in the ITCF

→ predict experiments, guide developments

 \rightarrow benchmark for approximate methods etc

→ H, He, Li, LiH, Be, ... ?

Reference: T. Dornheim, Zh. Moldabekov, M. Böhme, J. Vorberger, P. Tolias, D. Kraus, F. Graziani, and T. Döppner (in preparation)

Summary and Outlook

- PIMC as a starting point to understand e-e correlations in WDM
- First exact PIMC results for XC-kernel of H
- XC-kernels within the framework of DFT

Taken from: Zh. Moldabekov, M. Böhme, J. Vorberger, D. Blaschke, and **T. Dornheim**, J. Chem. Theory Comput. **19**, 1286-1299 (2023)

Summary and Outlook

- PIMC as a starting point to understand e-e correlations in WDM
- First exact PIMC results for XC-kernel of H
- XC-kernels within the framework of DFT

• Imaginary-time correlation functions as a framework to understand e-e correlations

 \rightarrow XRTS measurements: T, S(q), etc.

<u>Taken from:</u> **T. Dornheim**, M. Böhme, D. Chapman, D. Kraus, Th. Preston, Zh. Moldabekov, ..., and J. Vorberger, Phys. Plasmas **30**, 042707 (2023)

Summary and Outlook

- PIMC as a starting point to understand e-e correlations in WDM
- First exact PIMC results for XC-kernel of H
- XC-kernels within the framework of DFT

- Imaginary-time correlation functions as a framework to understand e-e correlations
- \rightarrow XRTS measurements: T, S(q), etc.
- → *Ab initio* PIMC simulations
- \rightarrow New experimental set-ups, ...

Thank you for your attention!

Taken from: **T. Dornheim**, Zh. Moldabekov, M. Böhme, J. Vorberger, P. Tolias, F. Graziani, and T. Döppner (in preparation)

Imaginary-time correlation functions

• <u>Density—density correlations:</u>

 $F(\mathbf{q},\tau) = \langle \hat{n}(\mathbf{q},0)\hat{n}(-\mathbf{q},\tau) \rangle$

 $\rightarrow\,$ measures stability / decay of correlations along τ

Imaginary-time path integral configuration

Imaginary-time correlation functions

• <u>Density—density correlations:</u>

 $F(\mathbf{q},\tau) = \langle \hat{n}(\mathbf{q},0)\hat{n}(-\mathbf{q},\tau) \rangle$

- $\rightarrow\,$ measures stability / decay of correlations along τ
- Connection to DSF:

$$F(\mathbf{q},\tau) = \int_{-\infty}^{\infty} d\omega S(\mathbf{q},\omega) e^{-\tau\omega}$$

Imaginary-time path integral configuration

Imaginary-time correlation functions

• <u>Density—density correlations:</u>

 $F(\mathbf{q},\tau) = \langle \hat{n}(\mathbf{q},0)\hat{n}(-\mathbf{q},\tau) \rangle$

- $\rightarrow\,$ measures stability / decay of correlations along τ
- Connection to DSF:

$$F(\mathbf{q},\tau) = \int_{-\infty}^{\infty} d\omega S(\mathbf{q},\omega) e^{-\tau\omega}$$

• <u>Spectral representation:</u>

$$S(\mathbf{q},\omega) = \sum_{m,l} P_m \left\| n_{ml}(\mathbf{q}) \right\|^2 \delta(\omega - \omega_{lm})$$

$$F(\mathbf{q},\tau) = \sum_{m,l} P_m \left\| n_{ml}(\mathbf{q}) \right\|^2 e^{-\tau \omega_{lm}}$$

Imaginary-time path integral configuration

Appendix

Imaginary-time correlation functions

• Gaussian diffusion process:

$$\rho_0(\mathbf{r}, \mathbf{r}; \beta) = \int_{\Omega} d\mathbf{r}' \ \rho_0(\mathbf{r}, \mathbf{r}'; \tau') \rho_0(\mathbf{r}', \mathbf{r}; \beta - \tau')$$

 \rightarrow Decay of elecronic correlations along τ :

$$F_{\rm SP}(\mathbf{q},\tau') = \int_{\Omega} \mathrm{d}\mathbf{\Delta}\mathbf{r} \ P(\mathbf{\Delta}\mathbf{r},\tau') \ \cos\left(\mathbf{q}\cdot\mathbf{\Delta}\mathbf{r}\right)$$

Example: Imaginary-time diffusion of a single electron

<u>Taken from:</u> **T. Dornheim**, J. Vorberger, Zh. Moldabekov and M. Böhme , Phil. Trans. Royal. Soc. (in print), arXiv: 2211.00579

Appendix

Imaginary-time correlation functions

• Gaussian diffusion process:

$$\rho_0(\mathbf{r}, \mathbf{r}; \beta) = \int_{\Omega} d\mathbf{r}' \ \rho_0(\mathbf{r}, \mathbf{r}'; \tau') \rho_0(\mathbf{r}', \mathbf{r}; \beta - \tau')$$

→ Decay of elecronic correlations along τ :

$$F_{\rm SP}(\mathbf{q},\tau') = \int_{\Omega} \mathrm{d}\mathbf{\Delta}\mathbf{r} \ P(\mathbf{\Delta}\mathbf{r},\tau') \, \cos\left(\mathbf{q}\cdot\mathbf{\Delta}\mathbf{r}\right)$$

→ Increasing τ -decay with q accurately follows from single-particle model

Single-electron ITCF exhibits correct τ -dependence

<u>Taken from:</u> **T. Dornheim**, J. Vorberger, Zh. Moldabekov and M. Böhme , Phil. Trans. Royal. Soc. (in print), arXiv: 2211.00579

3

•

Direct perturbation method gives access to nonlinear effects

• Harmonically perturbed electron gas

$$\hat{H} = \hat{H}_{\text{UEG}} + 2A \sum_{k=1}^{N} \cos\left(\hat{\mathbf{r}}_{k} \cdot \mathbf{q}\right)$$

 \rightarrow Expand nonlinear density response in powers of A

$$\begin{split} \langle \hat{\rho}_{\mathbf{q}} \rangle_{q,A} &= \chi^{(1)}(q)A + \chi^{(1,\text{cubic})}(q)A \\ & \langle \hat{\rho}_{\mathbf{2q}} \rangle_{q,A} = \chi^{(2)}(q)A^2, \\ & \langle \hat{\rho}_{\mathbf{3q}} \rangle_{q,A} = \chi^{(3)}(q)A^3, \end{split}$$

Density response at the first harmonic

Taken from: **T. Dornheim**, J. Vorberger, and M. Bonitz, *Phys. Rev. Lett.* **125**, 085001 (2020)

•

Direct perturbation method gives access to nonlinear effects

• Harmonically perturbed electron gas

$$\hat{H} = \hat{H}_{\text{UEG}} + 2A \sum_{k=1}^{N} \cos\left(\hat{\mathbf{r}}_{k} \cdot \mathbf{q}\right)$$

 \rightarrow Expand nonlinear density response in powers of A

$$\begin{split} \langle \hat{\rho}_{\mathbf{q}} \rangle_{q,A} &= \chi^{(1)}(q)A + \chi^{(1,\text{cubic})}(q)A^3 \\ & \langle \hat{\rho}_{\mathbf{2q}} \rangle_{q,A} = \chi^{(2)}(q)A^2, \\ & \langle \hat{\rho}_{\mathbf{3q}} \rangle_{q,A} = \chi^{(3)}(q)A^3, \end{split}$$

Density response at the first harmonic

Taken from: **T. Dornheim**, J. Vorberger, and M. Bonitz, *Phys. Rev. Lett.* **125**, 085001 (2020)

•

Direct perturbation method gives access to nonlinear effects

• Harmonically perturbed electron gas

$$\hat{H} = \hat{H}_{\text{UEG}} + 2A \sum_{k=1}^{N} \cos\left(\hat{\mathbf{r}}_{k} \cdot \mathbf{q}\right)$$

 \rightarrow Expand nonlinear density response in powers of A

$$\begin{split} \langle \hat{\rho}_{\mathbf{q}} \rangle_{q,A} &= \chi^{(1)}(q)A + \chi^{(1,\text{cubic})}(q)A^3 \\ & \langle \hat{\rho}_{\mathbf{2q}} \rangle_{q,A} = \chi^{(2)}(q)A^2, \\ & \langle \hat{\rho}_{\mathbf{3q}} \rangle_{q,A} = \chi^{(3)}(q)A^3, \end{split}$$

Density response at the first harmonic

Taken from: **T. Dornheim**, J. Vorberger, and M. Bonitz, *Phys. Rev. Lett.* **125**, 085001 (2020)

Various aspects of nonlinear density response theory

• Get nonlinear density response from higher-order imaginary-time correlation functions

TD, ZM, and JV, J. Chem. Phys. **151**, 054110 (2021)

Taken from: **T. Dornheim**, Zh. Moldabekov et al, Phys. Plasmas **30**, 032705 (2023)

Various aspects of nonlinear density response theory

- Get nonlinear density response from higher-order imaginary-time correlation functions
- TD, ZM, and JV, J. Chem. Phys. 151, 054110 (2021)
- LFC-based framework for nonlinear response
- **TD** et al, Phys. Rev. Research **3**, 033231 (2021)

Taken from: **T. Dornheim**, M. Böhme, Zh. Moldabekov, J. Vorberger, and M. Bonitz, Phys. Rev. Research **3**, 033231 (2023)

J. Phys. Scn. Jpn. 90, 104002 (2021)

Various aspects of nonlinear density response theory

- Get nonlinear density response from higher-order imaginary-time correlation functions
- **TD**, ZM, and JV, J. Chem. Phys. **151**, 054110 (2021)
- LFC-based framework for nonlinear response
- **TD** et al, Phys. Rev. Research **3**, 033231 (2021)
- Connection to higher-order correlation functions
- **TD**, ZM, and JV, J. Phys. Scn. Jpn. **90**, 104002 (2021)

Various aspects of nonlinear density response theory

- Get nonlinear density response from higher-order imaginary-time correlation functions
- TD, ZM, and JV, J. Chem. Phys. 151, 054110 (2021)
- LFC-based framework for nonlinear response
- **TD** et al, Phys. Rev. Research **3**, 033231 (2021)
- Connection to higher-order correlation functions
- TD, ZM, and JV, J. Phys. Scn. Jpn. 90, 104002 (2021)
- Nonlinear interaction of multiple perturbations
- TD et al, Contrib. Plasma Phys. e202100247 (2022)

Taken from: **T. Dornheim**, J. Vorberger, Zh. Moldabekov, and M. Bonitz, Contrib. Plasma Phys. e202100247 (2022)

Various aspects of nonlinear density response theory

- Get nonlinear density response from higher-order imaginary-time correlation functions
- TD, ZM, and JV, J. Chem. Phys. 151, 054110 (2021)
- LFC-based framework for nonlinear response
- **TD** et al, Phys. Rev. Research **3**, 033231 (2021)
- Connection to higher-order correlation functions
- TD, ZM, and JV, J. Phys. Scn. Jpn. 90, 104002 (2021)
- Nonlinear interaction of multiple perturbations
- TD et al, Contrib. Plasma Phys. E202100247 (2022)
- Nonlinear response of ideal systems of arbitrary order
- P. Tolias, **TD**, ZM and JV, EPL **142**, 44001 (2023)

Sixth-order density response (!)

<u>Taken from:</u> P. Tolias, **T. Dornheim**, Zh. Moldabekov, J. Vorberger, EPL **142**, 44001 (2023)

Various aspects of nonlinear density response theory

- Get nonlinear density response from higher-order imaginary-time correlation functions
- **TD**, ZM, and JV, J. Chem. Phys. **151**, 054110 (2021)
- LFC-based framework for nonlinear response
- **TD** et al, Phys. Rev. Research **3**, 033231 (2021)
- Connection to higher-order correlation functions
- TD, ZM, and JV, J. Phys. Scn. Jpn. 90, 104002 (2021)
- Nonlinear interaction of multiple perturbations
- TD et al, Contrib. Plasma Phys. E202100247 (2022)
- Nonlinear response of ideal systems of arbitrary order
- P. Tolias, **TD**, ZM and JV, EPL **142**, 44001 (2023)
- Nonlinear density response from DFT

ZM, JV, and **TD**, J. Chem. Theor. Comput. **18**, 2900 (2022)

<u>Taken from:</u> Zh. Moldabekov, J. Vorberger, and **T. Dornheim**, J. Chem. Theor. Comput. **18**, 2900 (2022)